A208747 Triangle of coefficients of polynomials u(n,x) jointly generated with A208748; see the Formula section.
1, 1, 2, 1, 2, 8, 1, 2, 12, 24, 1, 2, 16, 40, 80, 1, 2, 20, 56, 160, 256, 1, 2, 24, 72, 256, 576, 832, 1, 2, 28, 88, 368, 992, 2112, 2688, 1, 2, 32, 104, 496, 1504, 3968, 7552, 8704, 1, 2, 36, 120, 640, 2112, 6464, 15232, 26880, 28160, 1, 2, 40, 136, 800
Offset: 1
Examples
First five rows: 1 1...2 1...2...8 1...2...12...24 1...2...16...40...80 First five polynomials u(n,x): 1 1 + 2x 1 + 2x + 8x^2 1 + 2x + 12x^2 + 24x^3 1 + 2x + 16x^2 + 40x^3 + 80x^4 (1, 0, -1, 1, 0, 0, ...) DELTA (0, 0, 0, -2, 0, 0, ...) begins : 1 1, 0 1, 2, 0 1, 2, 8, 0 1, 2, 12, 24, 0 1, 2, 16, 40, 80, 0 1, 2, 20, 56, 160, 256, 0 1, 2, 24, 72, 256, 576, 832, 0. - _Philippe Deléham_, Mar 14 2012
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208747 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208748 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = A208342(n,k)*2^k. - Philippe Deléham, Mar 05 2012
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 4*T(n-2,k-2), T(1,0) = T(2,0) = 1, T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 14 2012
G.f.: -x*y/(-1+2*x*y-2*x^2*y+4*x^2*y^2+x). - R. J. Mathar, Aug 11 2015
Comments