cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208748 Triangle of coefficients of polynomials v(n,x) jointly generated with A208747; see the Formula section.

Original entry on oeis.org

1, 0, 4, 0, 2, 12, 0, 2, 8, 40, 0, 2, 8, 40, 128, 0, 2, 8, 48, 160, 416, 0, 2, 8, 56, 208, 640, 1344, 0, 2, 8, 64, 256, 928, 2432, 4352, 0, 2, 8, 72, 304, 1248, 3840, 9088, 14080, 0, 2, 8, 80, 352, 1600, 5504, 15616, 33280, 45568, 0, 2, 8, 88, 400, 1984, 7424
Offset: 1

Views

Author

Clark Kimberling, Mar 02 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0<=k<=n, it is (0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 14 2012

Examples

			First five rows:
1
0...4
0...2...12
0...2...8...40
0...2...8...40...128
First five polynomials v(n,x):
1
4x
2x + 12x^2
2x + 8x^2 + 40x^3
2x + 8x^2 + 40x^3 + 128x^4
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208747 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208748 *)

Formula

u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2^k*A208343(n,k). - Philippe Deléham, Mar 05 2012
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 4*T(n-2,k-2), T(1,0) = 1, T(2,0) = T(3,0) = 0, T(2,1) = 4, T(3,1) = 2, T(3,2) = 12, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 14 2012
G.f.: (-1+x-2*x*y)*x*y/(-1+x+2*x*y-2*x^2*y+4*x^2*y^2). - R. J. Mathar, Aug 11 2015