A208748 Triangle of coefficients of polynomials v(n,x) jointly generated with A208747; see the Formula section.
1, 0, 4, 0, 2, 12, 0, 2, 8, 40, 0, 2, 8, 40, 128, 0, 2, 8, 48, 160, 416, 0, 2, 8, 56, 208, 640, 1344, 0, 2, 8, 64, 256, 928, 2432, 4352, 0, 2, 8, 72, 304, 1248, 3840, 9088, 14080, 0, 2, 8, 80, 352, 1600, 5504, 15616, 33280, 45568, 0, 2, 8, 88, 400, 1984, 7424
Offset: 1
Examples
First five rows: 1 0...4 0...2...12 0...2...8...40 0...2...8...40...128 First five polynomials v(n,x): 1 4x 2x + 12x^2 2x + 8x^2 + 40x^3 2x + 8x^2 + 40x^3 + 128x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208747 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208748 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2^k*A208343(n,k). - Philippe Deléham, Mar 05 2012
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 4*T(n-2,k-2), T(1,0) = 1, T(2,0) = T(3,0) = 0, T(2,1) = 4, T(3,1) = 2, T(3,2) = 12, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 14 2012
G.f.: (-1+x-2*x*y)*x*y/(-1+x+2*x*y-2*x^2*y+4*x^2*y^2). - R. J. Mathar, Aug 11 2015
Comments