A208749 Triangle of coefficients of polynomials u(n,x) jointly generated with A208750; see the Formula section.
1, 1, 2, 1, 6, 2, 1, 12, 10, 4, 1, 20, 32, 24, 4, 1, 30, 80, 88, 36, 8, 1, 42, 170, 256, 180, 72, 8, 1, 56, 322, 644, 660, 384, 104, 16, 1, 72, 560, 1456, 1992, 1568, 704, 192, 16, 1, 90, 912, 3024, 5256, 5360, 3392, 1344, 272, 32, 1, 110, 1410, 5856, 12552
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 6, 2; 1, 12, 10, 4; 1, 20, 32, 24, 4; First five polynomials u(n,x): 1 1 + 2x 1 + 6x + 2x^2 1 + 12x + 10x^2 + 4x^3 1 + 20x + 32x^2 + 24x^3 + 4x^4 From _Philippe Deléham_, Mar 14 2012: (Start) (1, 0, 1, 0, 0, 0, ...) DELTA (0, 2, -1, -1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 6, 2, 0; 1, 12, 10, 4, 0; 1, 20, 32, 24, 4, 0; 1, 30, 80, 88, 36, 8, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208749 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208750 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle: g.f.: (1-x-2*y^2*x^2)/(1-2*x+x^2-2*y*x^2-2*y^2*x^2). - Philippe Deléham, Mar 14 2012
Recurrence: T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = 1, T(2,0) = 1, T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > =n. - Philippe Deléham, Mar 14 2012
Comments