A208750 Triangle of coefficients of polynomials v(n,x) jointly generated with A208749; see the Formula section.
1, 2, 1, 3, 4, 2, 4, 11, 10, 2, 5, 24, 32, 16, 4, 6, 45, 84, 72, 32, 4, 7, 76, 194, 240, 156, 48, 8, 8, 119, 406, 666, 592, 300, 88, 8, 9, 176, 784, 1632, 1896, 1344, 576, 128, 16, 10, 249, 1416, 3648, 5344, 4904, 2848, 1024, 224, 16, 11, 340, 2418, 7584
Offset: 1
Examples
First five rows: 1; 2, 1; 3, 4, 2; 4, 11, 10, 2; 5, 24, 32, 16, 4; First five polynomials v(n,x): 1 2 + x 3 + 4x + 2x^2 4 + 11x + 10x^2 + 2x^3 5 + 24x + 32x^2 + 16x^3 + 4x^4 From _Philippe Deléham_, Mar 16 2012: (Start) (1, 1, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -2, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 3, 4, 2, 0; 4, 11, 10, 2, 0; 5, 24, 32, 16, 4, 0; 6, 45, 84, 72, 32, 4, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208749 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208750 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x),
where u(1,x)=1, v(1,x)=1.
As DELTA-triangle with 0 <= k <= n: g.f.: (1-x+x^2-y*x^2-2*t^2*x^2)/(1-2*x+x^2-2*y*x^2-2*y^2*x^2). - Philippe Deléham, Mar 16 2012
As DELTA-triangle: T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(2,0) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 16 2012
Comments