This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208751 #14 Jan 24 2020 03:30:02 %S A208751 1,1,2,1,6,2,1,12,12,2,1,20,40,18,2,1,30,100,86,24,2,1,42,210,294,150, %T A208751 30,2,1,56,392,812,656,232,36,2,1,72,672,1932,2268,1240,332,42,2,1,90, %U A208751 1080,4116,6624,5172,2100,450,48,2,1,110,1650,8052,17028,17996 %N A208751 Triangle of coefficients of polynomials u(n,x) jointly generated with A208752; see the Formula section. %C A208751 For a discussion and guide to related arrays, see A208510. %C A208751 Subtriangle of the triangle T(n,k) given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 17 2012 %F A208751 u(n,x) = u(n-1,x) + 2x*v(n-1,x), %F A208751 v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x), %F A208751 where u(1,x)=1, v(1,x)=1. %F A208751 From _Philippe Deléham_, Mar 17 2012: (Start) %F A208751 As DELTA-triangle with 0 <= k <= n: %F A208751 G.f.: (1-x-y*x)/(1-2*x-y*x+x^2-y*x^2). %F A208751 T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A208751 First five rows: %e A208751 1; %e A208751 1, 2; %e A208751 1, 6, 2; %e A208751 1, 12, 12, 2; %e A208751 1, 20, 40, 18, 2; %e A208751 First five polynomials u(n,x): %e A208751 1 %e A208751 1 + 2x %e A208751 1 + 6x + 2x^2 %e A208751 1 + 12x + 12x^2 + 2x^3 %e A208751 1 + 20x + 40x^2 + 18x^3 + 2x^4 %e A208751 From _Philippe Deléham_, Mar 17 2012: (Start) %e A208751 (1, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins: %e A208751 1; %e A208751 1, 0; %e A208751 1, 2, 0; %e A208751 1, 6, 2, 0; %e A208751 1, 12, 12, 2, 0; %e A208751 1, 20, 40, 18, 2, 0; %e A208751 1, 30, 100, 86, 24, 2, 0; (End) %t A208751 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208751 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208751 v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]; %t A208751 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208751 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208751 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208751 TableForm[cu] %t A208751 Flatten[%] (* A208751 *) %t A208751 Table[Expand[v[n, x]], {n, 1, z}] %t A208751 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208751 TableForm[cv] %t A208751 Flatten[%] (* A208752 *) %Y A208751 Cf. A208752, A208510. %K A208751 nonn,tabl %O A208751 1,3 %A A208751 _Clark Kimberling_, Mar 01 2012