This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208755 #19 Jan 22 2020 20:13:23 %S A208755 1,1,2,1,2,4,1,2,6,8,1,2,8,14,16,1,2,10,20,34,32,1,2,12,26,56,78,64,1, %T A208755 2,14,32,82,140,178,128,1,2,16,38,112,218,352,398,256,1,2,18,44,146, %U A208755 312,594,852,882,512,1,2,20,50,184,422,912,1530,2040,1934,1024 %N A208755 Triangle of coefficients of polynomials u(n,x) jointly generated with A208756; see the Formula section. %C A208755 For a discussion and guide to related arrays, see A208510. %C A208755 Subtriangle of the triangle given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 04 2012 %F A208755 u(n,x) = u(n-1,x) + 2x*v(n-1,x), %F A208755 v(n,x) = x*u(n-1,x) + x*v(n-1,x), %F A208755 where u(1,x)=1, v(1,x)=1. %F A208755 From _Philippe Deléham_, Mar 04 2012: (Start) %F A208755 T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 1, T(2,1) = 1 and T(n,k) = 0 if k < 0 or if k > n. (End) %F A208755 G.f.: -(1+x*y)*x*y/(-1+x*y-x^2*y+2*x^2*y^2+x). - _R. J. Mathar_, Aug 11 2015 %e A208755 First five rows: %e A208755 1; %e A208755 1, 2; %e A208755 1, 2, 4; %e A208755 1, 2, 6, 8; %e A208755 1, 2, 8, 14, 16; %e A208755 First five polynomials u(n,x): %e A208755 1 %e A208755 1 + 2x %e A208755 1 + 2x + 4x^2 %e A208755 1 + 2x + 6x^2 + 8x^3 %e A208755 1 + 2x + 8x^2 + 14x^3 + 16x^4 %e A208755 From _Philippe Deléham_, Mar 04 2012: (Start) %e A208755 Triangle (1, 0, -1, 1, 0, 0, 0...) DELTA (0, 2, 0, -1, 0, 0, 0, ...) begins: %e A208755 1; %e A208755 1, 0; %e A208755 1, 2, 0; %e A208755 1, 2, 4, 0; %e A208755 1, 2, 6, 8, 0; %e A208755 1, 2, 8, 14, 16, 0; %e A208755 1, 2, 10, 20, 34, 32, 0; (End) %t A208755 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208755 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208755 v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; %t A208755 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208755 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208755 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208755 TableForm[cu] %t A208755 Flatten[%] (* A208755 *) %t A208755 Table[Expand[v[n, x]], {n, 1, z}] %t A208755 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208755 TableForm[cv] %t A208755 Flatten[%] (* A208756 *) %Y A208755 Cf. A208756, A208510. %K A208755 nonn,tabl %O A208755 1,3 %A A208755 _Clark Kimberling_, Mar 01 2012