A208757 Triangle of coefficients of polynomials u(n,x) jointly generated with A208758; see the Formula section.
1, 1, 2, 1, 2, 6, 1, 2, 8, 16, 1, 2, 10, 24, 44, 1, 2, 12, 32, 76, 120, 1, 2, 14, 40, 112, 232, 328, 1, 2, 16, 48, 152, 368, 704, 896, 1, 2, 18, 56, 196, 528, 1200, 2112, 2448, 1, 2, 20, 64, 244, 712, 1824, 3840, 6288, 6688, 1, 2, 22, 72, 296, 920, 2584, 6144
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 2, 6; 1, 2, 8, 16; 1, 2, 10, 24, 44; First five polynomials u(n,x): 1 1 + 2x 1 + 2x + 6x^2 1 + 2x + 8x^2 + 16x^3 1 + 2x + 10x^2 + 24x^3 + 44x^4 From _Philippe Deléham_, Mar 18 2012: (Start) (1, 0, -1, 1, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins: 1 1, 0 1, 2, 0 1, 2, 6, 0 1, 2, 8, 16, 0 1, 2, 10, 24, 44, 0 1, 2, 12, 32, 76, 120, 0 1, 2, 14, 40, 112, 232, 328, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208757 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208758 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 18 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-2*y*x+2*y*x^2-2*y^2*x^2)/(1-x-2*y*x+2*y*x^2-2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) -2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments