This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208759 #20 Jan 24 2020 03:28:13 %S A208759 1,1,2,1,4,6,1,6,16,16,1,8,30,56,44,1,10,48,128,188,120,1,12,70,240, %T A208759 504,608,328,1,14,96,400,1080,1872,1920,896,1,16,126,616,2020,4512, %U A208759 6672,5952,2448,1,18,160,896,3444,9352,17856,23040,18192,6688,1,20,198,1248,5488,17472,40600,67776,77616,54976,18272 %N A208759 Triangle of coefficients of polynomials u(n,x) jointly generated with A208760; see the Formula section. %C A208759 For a discussion and guide to related arrays, see A208510. %C A208759 Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 18 2012 %H A208759 G. C. Greubel, <a href="/A208759/b208759.txt">Table of n, a(n) for the first 100 rows, flattened</a> %F A208759 u(n,x) = u(n-1,x) + 2*x*v(n-1,x), %F A208759 v(n,x) = (x+1)*u(n-1,x) + 2*x*v(n-1,x), %F A208759 where u(1,x)=1, v(1,x)=1. %F A208759 From _Philippe Deléham_, Mar 18 2012: (Start) %F A208759 As DELTA-triangle with 0 <= k <= n: %F A208759 G.f.: (1-2y*x-2*y^2*x^2)/(1-x-2*y*x-2*y^2*x^2). %F A208759 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A208759 First five rows: %e A208759 1; %e A208759 1, 2; %e A208759 1, 4, 6; %e A208759 1, 6, 16, 16; %e A208759 1, 8, 30, 56, 44; %e A208759 First five polynomials u(n,x): %e A208759 1 %e A208759 1 + 2x %e A208759 1 + 4x + 6x^2 %e A208759 1 + 6x + 16x^2 + 16x^3 %e A208759 1 + 8x + 30x^2 + 56x^3 + 44x^4 %e A208759 From _Philippe Deléham_, Mar 18 2012: (Start) %e A208759 (1, 0, 0, 0, 0, ...) DELTA (0, 2, 1, -1, 0, 0, ...) begins: %e A208759 1; %e A208759 1, 0; %e A208759 1, 2, 0; %e A208759 1, 4, 6, 0; %e A208759 1, 6, 16, 16, 0; %e A208759 1, 8, 30, 56, 44, 0; %e A208759 1, 10, 48, 128, 188, 120, 0; (End) %t A208759 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208759 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208759 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; %t A208759 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208759 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208759 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208759 TableForm[cu] %t A208759 Flatten[%] (* A208759 *) %t A208759 Table[Expand[v[n, x]], {n, 1, z}] %t A208759 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208759 TableForm[cv] %t A208759 Flatten[%] (* A208760 *) %t A208759 Rest[CoefficientList[CoefficientList[Series[(1-2*y*x-2*y^2*x^2)/(1-x-2*y*x- 2*y^2*x^2), {x,0,20}, {y,0,20}], x], y]//Flatten] (* _G. C. Greubel_, Mar 28 2018 *) %Y A208759 Cf. A208760, A208510. %K A208759 nonn,tabl %O A208759 1,3 %A A208759 _Clark Kimberling_, Mar 02 2012 %E A208759 Terms a(58) onward added by _G. C. Greubel_, Mar 28 2018