cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208761 Triangle of coefficients of polynomials u(n,x) jointly generated with A208762; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 6, 4, 1, 12, 18, 8, 1, 20, 52, 50, 16, 1, 30, 120, 186, 126, 32, 1, 42, 240, 534, 576, 306, 64, 1, 56, 434, 1302, 1986, 1654, 718, 128, 1, 72, 728, 2828, 5712, 6632, 4484, 1650, 256, 1, 90, 1152, 5628, 14436, 21912, 20508, 11682, 3726, 512
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2012

Keywords

Comments

Alternating row sums: 1,-1,-1,-1,-1,-1,-1,-1,...
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by [1,0,1,0,0,0,0,...] DELTA [0,2,0,-1,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  6,  4;
  1, 12, 18,  8;
  1, 20, 52, 50, 16;
First five polynomials u(n,x):
  1
  1 +  2x
  1 +  6x +  4x^2
  1 + 12x + 18x^2 +  8x^3
  1 + 20x + 52x^2 + 50x^3 + 16x^4
From _Philippe Deléham_, Mar 04 2012: (Start)
Triangle (1, 0, 1, 0, 0, 0, ...) DELTA (0, 2, 0, -1, 0, 0, ...) begins:
  1;
  1,   0;
  1,   2,   0;
  1,   6,   4,   0;
  1,  12,  18,   8,   0;
  1,  20,  52,  50,  16,   0;
  1,  30, 120, 186, 126,  32,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1) v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208761 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208762 *)

Formula

u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Recurrence: T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1) + 2*T(n-2,k-2). - Philippe Deléham, Mar 04 2012
G.f.: (-1-x*y+x)*x*y/(-1+x*y+2*x+2*x^2*y^2+x^2*y-x^2). - R. J. Mathar, Aug 12 2015