A208761 Triangle of coefficients of polynomials u(n,x) jointly generated with A208762; see the Formula section.
1, 1, 2, 1, 6, 4, 1, 12, 18, 8, 1, 20, 52, 50, 16, 1, 30, 120, 186, 126, 32, 1, 42, 240, 534, 576, 306, 64, 1, 56, 434, 1302, 1986, 1654, 718, 128, 1, 72, 728, 2828, 5712, 6632, 4484, 1650, 256, 1, 90, 1152, 5628, 14436, 21912, 20508, 11682, 3726, 512
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 6, 4; 1, 12, 18, 8; 1, 20, 52, 50, 16; First five polynomials u(n,x): 1 1 + 2x 1 + 6x + 4x^2 1 + 12x + 18x^2 + 8x^3 1 + 20x + 52x^2 + 50x^3 + 16x^4 From _Philippe Deléham_, Mar 04 2012: (Start) Triangle (1, 0, 1, 0, 0, 0, ...) DELTA (0, 2, 0, -1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 6, 4, 0; 1, 12, 18, 8, 0; 1, 20, 52, 50, 16, 0; 1, 30, 120, 186, 126, 32, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1) v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208761 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208762 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
Recurrence: T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1) + 2*T(n-2,k-2). - Philippe Deléham, Mar 04 2012
G.f.: (-1-x*y+x)*x*y/(-1+x*y+2*x+2*x^2*y^2+x^2*y-x^2). - R. J. Mathar, Aug 12 2015
Comments