A208763 Triangle of coefficients of polynomials u(n,x) jointly generated with A208764; see the Formula section.
1, 1, 2, 1, 2, 6, 1, 2, 10, 14, 1, 2, 14, 26, 38, 1, 2, 18, 38, 90, 94, 1, 2, 22, 50, 158, 250, 246, 1, 2, 26, 62, 242, 470, 762, 622, 1, 2, 30, 74, 342, 754, 1614, 2138, 1606, 1, 2, 34, 86, 458, 1102, 2866, 4870, 6170, 4094, 1, 2, 38, 98, 590, 1514, 4582
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 2, 6; 1, 2, 10, 14; 1, 2, 14, 26, 38; First five polynomials u(n,x): 1 1 + 2x 1 + 2x + 6x^2 1 + 2x + 10x^2 + 14x^3 1 + 2x + 14x^2 + 26x^3 + 38x^4 From _Philippe Deléham_, Mar 19 2012: (Start) (1, 0, -1, 1, 0, 0, ...) DELTA (0, 2, 1, -2, 0, 0...) begins: 1; 1, 0; 1, 2, 0; 1, 2, 6, 0; 1, 2, 10, 14, 0; 1, 2, 14, 26, 38, 0; 1, 2, 18, 38, 90, 94, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208763 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208764 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 19 2012: (Start)
G.f.: (1-y*x+2*y*x^2-4*y^2*x^2)/(1-x-y*x+y*x^2-4*y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 4*T(n-2,k-2), T(1,0) = 1, T(2,0) = 1, T(2,1) = 2, T(n,k) = 0 if k < 0 or if k >= n. (End)
Comments