This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208766 #18 Jan 24 2020 03:27:43 %S A208766 1,1,3,1,6,7,1,9,21,19,1,12,42,76,47,1,15,70,190,235,123,1,18,105,380, %T A208766 705,738,311,1,21,147,665,1645,2583,2177,803,1,24,196,1064,3290,6888, %U A208766 8708,6424,2047,1,27,252,1596,5922,15498,26124,28908,18423 %N A208766 Triangle of coefficients of polynomials v(n,x) jointly generated with A208765; see the Formula section. %C A208766 For a discussion and guide to related arrays, see A208510. %C A208766 Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -2/3, -4/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 20 2012 %F A208766 u(n,x) = u(n-1,x) + 2x*v(n-1,x), %F A208766 v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x), %F A208766 where u(1,x)=1, v(1,x)=1. %F A208766 From _Philippe Deléham_, Mar 20 2012: (Start) %F A208766 As DELTA-triangle with 0 <= k <= n: %F A208766 G.f.: (1-x-y*x+3*y*x^2-4*y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-4*y^2*x^2). %F A208766 T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 4*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A208766 First five rows: %e A208766 1; %e A208766 1, 3; %e A208766 1, 6, 7; %e A208766 1, 9, 21, 19; %e A208766 1, 12, 42, 76, 47; %e A208766 First five polynomials v(n,x): %e A208766 1 %e A208766 1 + 3x %e A208766 1 + 6x + 7x^2 %e A208766 1 + 9x + 21x^2 + 19x^3 %e A208766 1 + 12x + 42x^2 + 76x^3 + 47x^4 %e A208766 From _Philippe Deléham_, Mar 20 2012: (Start) %e A208766 (1, 0, 0, 1, 0, 0, ...) DELTA (0, 3, -2/3, -4/3, 0, 0, ...) begins: %e A208766 1; %e A208766 1, 0; %e A208766 1, 3, 0; %e A208766 1, 6, 7, 0; %e A208766 1, 9, 21, 19, 0; %e A208766 1, 12, 42, 76, 47, 0; (End) %t A208766 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208766 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208766 v[n_, x_] := 2 x*u[n - 1, x] + (x + 1) v[n - 1, x]; %t A208766 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208766 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208766 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208766 TableForm[cu] %t A208766 Flatten[%] (* A208765 *) %t A208766 Table[Expand[v[n, x]], {n, 1, z}] %t A208766 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208766 TableForm[cv] %t A208766 Flatten[%] (* A208766 *) %Y A208766 Cf. A208765, A208510. %K A208766 nonn,tabl %O A208766 1,3 %A A208766 _Clark Kimberling_, Mar 02 2012