This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208775 #20 Oct 31 2017 10:36:40 %S A208775 6,11,16,30,52,117,242,577,1360,3347,8278,20978,53346,137422,355978, %T A208775 928731,2434580,6414014,16961468,45017417,119840582,319916277, %U A208775 856089572,2295950281,6169664562,16608996492,44785220118,120942143132,327053057574,885545659155,2400570958904,6514679288762,17697582670400,48122529680805 %N A208775 Number of n-bead necklaces labeled with numbers 1..6 not allowing reversal, with no adjacent beads differing by more than 1. %H A208775 Andrew Howroyd, <a href="/A208775/b208775.txt">Table of n, a(n) for n = 1..100</a> %H A208775 Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551 [math.CO], 2008. %F A208775 a(n) = (1/n) * Sum_{d | n} totient(n/d) * A124699(n). - _Andrew Howroyd_, Mar 18 2017 %e A208775 All solutions for n=3: %e A208775 ..5....1....1....3....5....5....1....2....2....3....3....6....2....4....4....4 %e A208775 ..5....1....2....3....6....5....1....3....2....3....4....6....2....4....5....4 %e A208775 ..5....2....2....4....6....6....1....3....2....3....4....6....3....4....5....5 %t A208775 sn[n_, k_] := 1/n*Sum[ Sum[ EulerPhi[j]*(1 + 2*Cos[i*Pi/(k + 1)])^(n/j), {j, Divisors[n]}], {i, 1, k}]; Table[sn[n, 6], {n, 1, 34}] // FullSimplify (* _Jean-François Alcover_, Oct 31 2017, after _Joerg Arndt_ *) %o A208775 (PARI) %o A208775 /* from the Knopfmacher et al. reference */ %o A208775 default(realprecision,99); /* using floats */ %o A208775 sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); %o A208775 vector(66,n, round(sn(n,6)) ) %o A208775 /* _Joerg Arndt_, Aug 09 2012 */ %Y A208775 Column 6 of A208777. %K A208775 nonn %O A208775 1,1 %A A208775 _R. H. Hardin_, Mar 01 2012