A208825 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero.
1, 1, 2, 1, 3, 2, 1, 4, 5, 5, 1, 5, 8, 16, 7, 1, 6, 13, 38, 45, 18, 1, 7, 18, 75, 155, 167, 32, 1, 8, 25, 131, 415, 828, 609, 84, 1, 9, 32, 210, 905, 2821, 4390, 2471, 185, 1, 10, 41, 316, 1755, 7582, 19657, 25202, 10143, 486, 1, 11, 50, 453, 3085, 17339, 65134, 144871
Offset: 1
Examples
All solutions for n=3, k=3: .-2....0...-1...-1...-3...-2...-3...-2 .-1....0...-1....0....1....1....0....0 ..3....0....2....1....2....1....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..165
Formula
Empirical for row n:
n=2: a(k) = k + 1.
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = (2/3)*k^3 + (3/2)*k^2 + (11/6)*k + 1.
n=5: a(k) = 3*a(k-1) - a(k-2) - 5*a(k-3) + 5*a(k-4) + a(k-5) - 3*a(k-6) + a(k-7).
n=6: a(k) = (22/15)*k^5 + (11/3)*k^4 + (14/3)*k^3 + (13/3)*k^2 + (43/15)*k + 1.
n=7: a(k) = 4*a(k-1) - 3*a(k-2) - 8*a(k-3) + 14*a(k-4) - 14*a(k-6) + 8*a(k-7) + 3*a(k-8) - 4*a(k-9) + a(k-10).
Comments