A208826 Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero.
7, 45, 155, 415, 905, 1755, 3085, 5077, 7891, 11761, 16887, 23555, 32005, 42575, 55545, 71305, 90175, 112597, 138931, 169671, 205217, 246115, 292805, 345885, 405835, 473305, 548815, 633067, 726621, 830231, 944497, 1070225, 1208055
Offset: 1
Keywords
Examples
Some solutions for n=3: -2 -2 -2 -2 -3 -3 -2 -2 -2 -2 -1 0 -3 -1 -2 -1 -2 0 -1 -1 -2 -2 1 0 -1 1 -1 0 -2 0 0 0 1 1 -1 -2 2 0 0 -2 1 -1 -1 0 3 0 0 0 0 1 3 2 2 3 0 1 1 1 1 0 1 -1 -1 1 3 0 1 3 1 2 1 3 1 1 2 0 1 2 3 0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208825.
Formula
Empirical: a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7).
Conjectures from Colin Barker, Jul 06 2018: (Start)
G.f.: x*(7 + 24*x + 27*x^2 + 30*x^3 + 5*x^4 - 2*x^5 + x^6) / ((1 - x)^5*(1 + x)^2).
a(n) = (23*n^4 + 46*n^3 + 58*n^2 + 44*n + 24) / 24 for n even.
a(n) = (23*n^4 + 46*n^3 + 58*n^2 + 26*n + 15) / 24 for n odd.
(End)
Comments