cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208827 Number of 6-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero.

Original entry on oeis.org

18, 167, 828, 2821, 7582, 17339, 35288, 65769, 114442, 188463, 296660, 449709, 660310, 943363, 1316144, 1798481, 2412930, 3184951, 4143084, 5319125, 6748302, 8469451, 10525192, 12962105, 15830906, 19186623, 23088772, 27601533, 32793926
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Row 6 of A208825.

Examples

			Some solutions for n=3:
  -3  -3  -3  -2  -2  -3  -3  -2  -3  -3  -3  -3  -2  -3  -3  -2
  -1   0  -2   0  -1  -2  -1  -1   0  -3  -1  -1  -1   2  -2   0
   3   1   0   0   3   2   0   1  -2   1   0   2  -2  -2   3   1
  -2  -1   3   0   0   3   2  -2  -1   3   0  -1   2  -2   2  -2
   3   0   3   0   0  -3  -1   2   3   0   3   3   0   2  -1   0
   0   3  -1   2   0   3   3   2   3   2   1   0   3   3   1   3
		

Crossrefs

Cf. A208825.

Formula

Empirical: a(n) = (22/15)*n^5 + (11/3)*n^4 + (14/3)*n^3 + (13/3)*n^2 + (43/15)*n + 1.
Conjectures from Colin Barker, Jul 07 2018: (Start)
G.f.: x*(18 + 59*x + 96*x^2 - 2*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)