A208827 Number of 6-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero.
18, 167, 828, 2821, 7582, 17339, 35288, 65769, 114442, 188463, 296660, 449709, 660310, 943363, 1316144, 1798481, 2412930, 3184951, 4143084, 5319125, 6748302, 8469451, 10525192, 12962105, 15830906, 19186623, 23088772, 27601533, 32793926
Offset: 1
Keywords
Examples
Some solutions for n=3: -3 -3 -3 -2 -2 -3 -3 -2 -3 -3 -3 -3 -2 -3 -3 -2 -1 0 -2 0 -1 -2 -1 -1 0 -3 -1 -1 -1 2 -2 0 3 1 0 0 3 2 0 1 -2 1 0 2 -2 -2 3 1 -2 -1 3 0 0 3 2 -2 -1 3 0 -1 2 -2 2 -2 3 0 3 0 0 -3 -1 2 3 0 3 3 0 2 -1 0 0 3 -1 2 0 3 3 2 3 2 1 0 3 3 1 3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208825.
Formula
Empirical: a(n) = (22/15)*n^5 + (11/3)*n^4 + (14/3)*n^3 + (13/3)*n^2 + (43/15)*n + 1.
Conjectures from Colin Barker, Jul 07 2018: (Start)
G.f.: x*(18 + 59*x + 96*x^2 - 2*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments