A208840 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 1 0 vertically.
2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 78, 81, 14, 26, 256, 282, 171, 196, 22, 42, 676, 768, 855, 406, 484, 35, 68, 1764, 2430, 2421, 3010, 990, 1225, 56, 110, 4624, 7086, 9801, 8736, 11242, 2485, 3136, 90, 178, 12100, 21588, 31419, 49126, 33088, 44275
Offset: 1
Examples
Some solutions for n=4 k=3 ..1..0..0....1..1..1....1..1..1....1..0..1....0..1..0....0..1..0....0..1..1 ..0..1..1....0..1..0....1..1..0....1..0..0....1..1..0....1..0..1....0..1..1 ..1..0..0....0..1..0....1..1..1....1..1..1....0..1..0....0..1..0....0..1..1 ..0..1..1....0..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1465
Crossrefs
Formula
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=2*a(k-1)+4*a(k-2)-3*a(k-3)
n=4: a(k)=2*a(k-1)+7*a(k-2)-6*a(k-3)
n=5: a(k)=2*a(k-1)+12*a(k-2)-11*a(k-3)
n=6: a(k)=2*a(k-1)+20*a(k-2)-19*a(k-3)
n=7: a(k)=2*a(k-1)+33*a(k-2)-32*a(k-3)
Comments