cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208842 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 406, 3010, 8736, 49126, 169974, 833364, 3166030, 14462714, 57750784, 254227806, 1042375166, 4500225380, 18712446886, 79961471506, 334969826464, 1423640395254, 5987342521510, 25373701694964, 106935469300254
Offset: 1

Views

Author

R. H. Hardin, Mar 01 2012

Keywords

Comments

Row 5 of A208840.

Examples

			Some solutions for n=4:
..1..1..0..0....1..0..1..0....1..0..1..1....1..0..1..1....0..1..0..0
..1..0..1..1....1..1..1..1....1..0..1..1....0..1..0..1....0..1..1..0
..1..1..0..0....1..0..1..0....1..0..1..1....1..0..1..1....1..1..0..0
..1..0..1..0....1..1..1..1....1..0..1..1....0..1..0..1....0..1..1..1
..1..1..0..1....1..0..1..0....1..1..1..1....1..0..1..1....1..1..0..0
		

Crossrefs

Cf. A208840.

Formula

Empirical: a(n) = 2*a(n-1) + 12*a(n-2) - 11*a(n-3).
Empirical g.f.: 14*x*(1 + 12*x - 11*x^2) / (1 - 2*x - 12*x^2 + 11*x^3). - Colin Barker, Jul 07 2018