cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208853 Array of hypotenuses of primitive Pythagorean triangles when read by SW-NE diagonals.

This page as a plain text file.
%I A208853 #61 Feb 16 2025 08:33:16
%S A208853 5,13,17,29,25,37,53,41,0,65,85,65,61,73,101,125,97,85,89,109,145,173,
%T A208853 137,0,113,0,0,197,229,185,157,145,149,169,205,257,293,241,205,185,
%U A208853 181,193,221,265,325,365,305,0,233,221,0
%N A208853 Array of hypotenuses of primitive Pythagorean triangles when read by SW-NE diagonals.
%C A208853 All primitive Pythagorean triples (see the links) (a,b,c), with a odd, b even, hence c odd, are given by c=u^2 + v^2, with u odd, u=2*n+1, n>=1, v even, v=2*m, m>=1, and gcd(u,v)=1. The present array is c=c(n,m) = (2*n-1)^2 + (2*m)^2, if gcd(2*n-1,2*m)=1 and 0 otherwise. The corresponding triangle, read by SW-NE diagonals, is T(n,m):= c(n-m+1,m). The 0 entries indicate that there are only non-primitive triples for these n,m values. See the example section for the scaling factor g=gcd(u,v)^2 for such non-primitive triangles.
%C A208853 For the increasingly ordered c-values see A008846 (with multiplicity see A020882).
%C A208853 All primitive Pythagorean triples are given by
%C A208853 (a(n,m)=A208854(n,m), b(n,m)=A208855(n,m), c(n,m)), n>=1, m>=1. If this is (0,0,0) then no primitive triple exists for these n,m values. See the example section.
%C A208853 In the prime factorization of c(n,m) (which is odd) all prime factors are of the type 4*k+1 (see A002144). See the Niven-Zuckerman-Montgomery reference, Theorem 3.20, p. 164. For the general representation of positive integers as the sum of two squares see Theorem 2.15 by Fermat, p. 55. E.g.: c(5,2) = 85 = 5*17. c = 5*7^2 = 245 has a non-primitive solution 7^2*(1^2 + 2^2) = 7^2*c(1,1), therefore c(4,7)=0 in this array.
%C A208853 The triples with an even cathetus (b) and the hypotenuse (c) differing by 1 unit are (2*k+1, 4*T(k), 4*T(k)+1), k >= 1, with the triangular numbers A000217. The c values are given in A001844. E.g., (n,m)=(1,1), k=1. (3,4,5); (n,m)=(2,1), k=2, (5,12,13); (n,m)=(2,2), k=3, (7,24,25). See the example section for the table.
%C A208853 The triples with an odd cathetus (a) and the hypotenuse differing by 2 units are (4*k^2-1, 4*k, 4*k^2+1), k >= 1. These triples are given in (A000466(k), A008586(k), A053755(k)). E.g., (n,m)=(1,4), k=4, (63,16,65).
%C A208853 The triples with the catheti differing by one length unit are generated by a substitution rule for the (u,v) values starting with (1,1). See a _Wolfdieter Lang_ comment on A001653 for this rule. - _Wolfdieter Lang_, Mar 08 2012
%D A208853 I. Niven, H. S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, 5th edition, Wiley & Sons, New York, 1991
%H A208853 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Pythagorean Triples and Online Calculators</a>.
%H A208853 E. S. Rowland, <a href="https://ericrowland.github.io/investigations/tripleslist-long.html">Primitive Solutions to x^2 + y^2 = z^2</a>
%H A208853 Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/rtritab.txt">Table of primitive Pythagorean triples and related parameters</a>
%H A208853 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>.
%F A208853 T(n,m) = c(n-m+1,m), n >= m >= 1, with c(n,m) := (2*n-1)^2 + (2*m)^2, if gcd(2*n-1, 2*m) = 1 and 0 otherwise.
%e A208853 Triangle T(n,m):
%e A208853 ......m|  1     2     3     4    5    6     7     8    9    10 ...
%e A208853 ......v|  2     4     6     8   10   12    14    16   18    20 ...
%e A208853 n,  u
%e A208853 1,  1     5
%e A208853 2,  3    13    17
%e A208853 3,  5    29    25    37
%e A208853 4,  7    53    41     0    65
%e A208853 5,  9    85    65    61    73  101
%e A208853 6, 11   125    97    85    89  109  145
%e A208853 7, 13   173   137     0   113    0    0   197
%e A208853 8, 15   229   185   157   145  149  169   205   257
%e A208853 9, 17   293   241   205   185  181  193   221   265  325
%e A208853 10,19   365   305     0   233  221    0     0   281    0   401
%e A208853 ...
%e A208853 Array c(n,m):
%e A208853 ......m|  1    2    3     4     5    6     7     8    9    10 ...
%e A208853 ......v|  2    4    6     8    10   12    14    16   18    20 ...
%e A208853 n,  u
%e A208853 1,  1     5   17   37    65   101  145   197   257  325   401
%e A208853 2   3    13   25    0    73   109    0   205   265    0   409
%e A208853 3,  5    29   41   61    89     0  169   221   281  349     0
%e A208853 4,  7    53   65   85   113   149  193     0   305  373   449
%e A208853 5,  9    85   97    0   145   181    0   277   337    0   481
%e A208853 6, 11   125  137  157   185   221  265   317   377  445   521
%e A208853 7, 13   173  185  205   233   269  313   365   425  493   569
%e A208853 8, 15   229  241    0   289     0    0   421   481    0     0
%e A208853 9, 17   293  305  325   353   389  433   485   545  613   689
%e A208853 10,19   365  377  397   425   461  505   557   617  685   761
%e A208853 ...
%e A208853 ------------------------------------------------------------------
%e A208853 Array of triples (a(n,m)=A208854,b(n,m)=A208855,c(n,m)):
%e A208853 ......m|    1           2               3             4  ...
%e A208853 ......v|    2           4               6             8  ...
%e A208853 n,  u
%e A208853 1,  1    (3,4,5)     (15,8,17)      (35,12,37)     (63,16,65)
%e A208853 2,  3    (5,12,13)   (7,24,25)       (0,0,0)       (55,48,73)
%e A208853 3,  5   (21,20,29)   (9,40,41)      (11,60,61)     (39,80,89)
%e A208853 4,  7   (45,28,53)   (33,56,65)     (13,84,85)    (15,112,113)
%e A208853 5,  9   (77,36,85)   (65,72,97)      (0,0,0)      (17,144,145)
%e A208853 6, 11  (117,44,125) (105,88,137)   (85,132,157)   (57,176,185)
%e A208853 7, 13  (165,52,173) (153,104,185)  (133,156,205) (105,208,233)
%e A208853 8, 15  (221,60,229) (209,120,241)    (0,0,0)     (161,240,289)
%e A208853 9, 17  (285,68,293) (273,136,305)  (253,204,325) (225,272,353)
%e A208853 10,19  (357,76,365) (345,152,377)  (325,228,397) (297,304,425)
%e A208853 ...
%e A208853 Array continued:
%e A208853 Array of triples (a(n,m)=A208854,b(n,m)=A208855,c(n,m)):
%e A208853 ......m|     5            6               7           8  ...
%e A208853 ......v|    10           12              14          16  ...
%e A208853 n,  u
%e A208853 1,  1   (99,20,101)  (143,24,145)  (195,28,197)  (255,32,257)
%e A208853 2   3   (91,60,109)     (0,0,0)    (187,84,205)  (247,96,265)
%e A208853 3,  5    (0,0,0)     (119,120,169) (171,140,221) (231,160,281)
%e A208853 4,  7  (51,140,149)  (95,168,193)     (0,0,0)    (207,224,305)
%e A208853 5,  9  (19,180,181)     (0,0,0)    (115,252,277) (175,288,337)
%e A208853 6, 11  (21,220,221)  (23,264,265)  (75,308,317)  (135,352,377)
%e A208853 7, 13  (69,260,269)  (25,312,313)  (27,364,365)  (87,416,425)
%e A208853 8, 15     (0,0,0)       (0,0,0)    (29,420,421)  (31,480,481)
%e A208853 9, 17  (189,340,389) (145,408,433) (93,476,485)  (33,544,545)
%e A208853 10,19  (261,380,461) (217,456,505) (165,532,557) (105,608,617)
%e A208853 ...
%e A208853 (0,0,0) indicates that no primitive Pythagorean triangle exists for these (n,m) values. The corresponding scaled triples would be (a,b,c) = g*(a/g,b/g,c/g), with g=gcd(u,v)^2 for such non-primitive triangles. E.g., c(n,m) = c(5,3) = 0, (u,v) = (9,6), g = 3^2, (45,108,117) = 3^2*(45/9,108/9,117/9) = 9*(5,12,13). The scaling factor for the primitive triangle (5,12,13), tabulated for c(n,m)=(2,1), is here 9.
%Y A208853 Cf. A020882, A002144, A208854, A208855.
%K A208853 nonn,easy,tabl
%O A208853 1,1
%A A208853 _Wolfdieter Lang_, Mar 05 2012