This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208854 #18 Oct 26 2024 03:32:31 %S A208854 3,5,15,21,7,35,45,9,0,63,77,33,11,55,99,117,65,13,39,91,143,165,105, %T A208854 0,15,0,0,195,221,153,85,17,51,119,187,255,285,209,133,57,19,95,171, %U A208854 247,323,357,273,0,105,21,0,0,231,0,399 %N A208854 Array of odd catheti of primitive Pythagorean triangles when read by SW-NE diagonals. %C A208854 See the comments, reference and links in A208853. The present array is a(n,m) = abs((2*n-1)^2 - (2*m)^2) if gcd(2*n-1,2*m)=1 and 0 otherwise. Put u=2*n-1 and v=2*m. The array read by SW-NE diagonals is T(n,m):=a(n-m+1,m), n>=m>=1. %C A208854 All primitive Pythagorean triples are given by (a(n,m),b(n,m):=A208855(n,m), c(n,m):=A208853(n,m)), n>=1, m>=1. If the entry is (0,0,0) there is no primitive Pythagorean triple for these n and m values. See the example section of A208853 for the array of triples. %C A208854 Every odd number a=2*k+1, k>=1, appears at least in one primitive triple, namely in (2*k+1, 4*T(k),4*T(k)+1), with the triangular numbers T(k) := A000217(k). This a-value is a=u^2-v^2 with (u,v)=(k+1,k). It may appear in other primitive triples. E.g. a=33=2*16+1 appears in (u,v)=(17,16) ((n,m)= (9,8)) as (33,544,545), and also in (33,56,65) with (n,m)=(4,2) (maybe others). %F A208854 T(n,m)=a(n-m+1,m), n>=m>=1, with a(n,m):=abs((2*n-1)^2 - (2*m)^2) if gcd(2*n-1,2*m)=1 and 0 otherwise. %e A208854 Array a(n,m): %e A208854 .....m| 1 2 3 4 5 6 7 8 9 10 %e A208854 .....v| 2 4 6 8 10 12 14 16 18 20 %e A208854 n, u %e A208854 1, 1 3 15 35 63 99 143 195 255 323 399 %e A208854 2, 3 5 7 0 55 91 0 187 247 0 391 %e A208854 3, 5 21 9 11 39 0 119 171 231 299 0 %e A208854 4, 7 45 33 13 15 51 95 0 207 275 351 %e A208854 5, 9 77 65 0 17 19 0 115 175 0 319 %e A208854 6, 11 117 105 85 57 21 23 75 135 203 279 %e A208854 7, 13 165 153 133 105 69 25 27 87 155 231 %e A208854 8, 15 221 209 0 161 0 0 29 31 0 0 %e A208854 9, 17 285 273 253 225 189 145 93 33 35 111 %e A208854 10,19 357 345 325 297 261 217 165 105 37 39 %e A208854 ... %e A208854 Triangle T(n,m): %e A208854 .....m| 1 2 3 4 5 6 7 8 9 10 %e A208854 .....v| 2 4 6 8 10 12 14 16 18 20 %e A208854 n, u %e A208854 1, 1 3 %e A208854 2, 3 5 15 %e A208854 3, 5 21 7 35 %e A208854 4, 7 45 9 0 63 %e A208854 5, 9 77 33 11 55 99 %e A208854 6 11 117 65 13 39 91 143 %e A208854 7, 13 165 105 0 15 0 0 195 %e A208854 8, 15 221 153 85 17 51 119 187 255 %e A208854 9, 17 285 209 133 57 19 95 171 247 323 %e A208854 10,19 357 273 0 105 21 0 0 231 0 399 %e A208854 ... %e A208854 For the array of triples see the example section of A208853. %Y A208854 Cf. A208853, A208855. %K A208854 nonn,easy,tabl %O A208854 1,1 %A A208854 _Wolfdieter Lang_, Mar 05 2012