cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208854 Array of odd catheti of primitive Pythagorean triangles when read by SW-NE diagonals.

This page as a plain text file.
%I A208854 #18 Oct 26 2024 03:32:31
%S A208854 3,5,15,21,7,35,45,9,0,63,77,33,11,55,99,117,65,13,39,91,143,165,105,
%T A208854 0,15,0,0,195,221,153,85,17,51,119,187,255,285,209,133,57,19,95,171,
%U A208854 247,323,357,273,0,105,21,0,0,231,0,399
%N A208854 Array of odd catheti of primitive Pythagorean triangles when read by SW-NE diagonals.
%C A208854 See the comments, reference and links in A208853. The present array is a(n,m) = abs((2*n-1)^2 - (2*m)^2) if gcd(2*n-1,2*m)=1 and 0 otherwise. Put u=2*n-1 and v=2*m. The array read by SW-NE diagonals is T(n,m):=a(n-m+1,m), n>=m>=1.
%C A208854 All primitive Pythagorean triples are given by (a(n,m),b(n,m):=A208855(n,m), c(n,m):=A208853(n,m)), n>=1, m>=1. If the entry is (0,0,0) there is no primitive Pythagorean triple for these n and m values. See the example section of A208853 for the array of triples.
%C A208854 Every odd number a=2*k+1, k>=1, appears at least in one primitive triple, namely in (2*k+1, 4*T(k),4*T(k)+1), with the triangular numbers T(k) := A000217(k).  This a-value is  a=u^2-v^2 with (u,v)=(k+1,k).  It may appear in other primitive triples. E.g. a=33=2*16+1 appears in (u,v)=(17,16) ((n,m)= (9,8)) as (33,544,545), and also in (33,56,65) with (n,m)=(4,2) (maybe others).
%F A208854 T(n,m)=a(n-m+1,m), n>=m>=1, with a(n,m):=abs((2*n-1)^2 - (2*m)^2) if gcd(2*n-1,2*m)=1 and 0 otherwise.
%e A208854 Array a(n,m):
%e A208854 .....m|   1    2    3     4     5     6     7      8     9     10
%e A208854 .....v|   2    4    6     8    10    12    14     16    18     20
%e A208854 n,  u
%e A208854 1,  1     3   15   35    63    99   143   195    255   323    399
%e A208854 2,  3     5    7    0    55    91     0   187    247     0    391
%e A208854 3,  5    21    9   11    39     0   119   171    231   299      0
%e A208854 4,  7    45   33   13    15    51    95     0    207   275    351
%e A208854 5,  9    77   65    0    17    19     0   115    175     0    319
%e A208854 6, 11   117  105   85    57    21    23    75    135   203    279
%e A208854 7, 13   165  153  133   105    69    25    27     87   155    231
%e A208854 8, 15   221  209    0   161     0     0    29     31     0      0
%e A208854 9, 17   285  273  253   225   189   145    93     33    35    111
%e A208854 10,19   357  345  325   297   261   217   165    105    37     39
%e A208854 ...
%e A208854 Triangle T(n,m):
%e A208854 .....m|     1     2     3      4     5     6      7     8     9   10
%e A208854 .....v|     2     4     6      8    10    12     14    16    18   20
%e A208854 n,  u
%e A208854 1,  1       3
%e A208854 2,  3       5    15
%e A208854 3,  5      21     7    35
%e A208854 4,  7      45     9     0     63
%e A208854 5,  9      77    33    11     55    99
%e A208854 6  11     117    65    13     39    91   143
%e A208854 7, 13     165   105     0     15     0     0    195
%e A208854 8, 15     221   153    85     17    51   119    187   255
%e A208854 9, 17     285   209   133     57    19    95    171   247   323
%e A208854 10,19     357   273     0    105    21     0      0   231     0  399
%e A208854 ...
%e A208854 For the array of triples see the example section of A208853.
%Y A208854 Cf. A208853, A208855.
%K A208854 nonn,easy,tabl
%O A208854 1,1
%A A208854 _Wolfdieter Lang_, Mar 05 2012