cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208855 Array of even catheti of primitive Pythagorean triangles when read by SW-NE diagonals.

This page as a plain text file.
%I A208855 #25 Feb 12 2025 07:05:21
%S A208855 4,12,8,20,24,12,28,40,0,16,36,56,60,48,20,44,72,84,80,60,24,52,88,0,
%T A208855 112,0,0,28,60,104,132,144,140,120,84,32,68,120,156,176,180,168,140,
%U A208855 96,36,76,136,0,208,220,0,0,160,0,40
%N A208855 Array of even catheti of primitive Pythagorean triangles when read by SW-NE diagonals.
%C A208855 See the comments, reference and links in A208853. The present array is b(n,m) = 2*(2*n-1)*(2*m) if gcd(2*n-1,2*m)=1 and 0 otherwise. u=2*n-1, v=2*m. The array read by SW-NE diagonals is T(n,m):=b(n-m+1,m), n>=m>=1.
%C A208855 All primitive Pythagorean triples are given by
%C A208855 (a(n,m)=A208854(n,m),b(n,m),c(n,m)= A208853(n,m)), n>=1, m>=1. If the entry is 0 there is no primitive Pythagorean triple for these n and m values.
%H A208855 Paolo Xausa, <a href="/A208855/b208855.txt">Table of n, a(n) for n = 1..11325</a> (rows 1..150 of triangle, flattened).
%F A208855 T(n,m)=b(n-m+1,m), n>=m>=1, with b(n,m) = 4*(2*n-1)*m if gcd(2*n-1,2*m)=1 and 0 otherwise.
%e A208855 Array b(n,m):
%e A208855            m|  1    2    3    4    5    6    7    8    9   10 ...
%e A208855            v|  2    4    6    8   10   12   14   16   18   20 ...
%e A208855    n,  u
%e A208855    1,  1       4    8   12   16   20   24   28   32   36   40 ...
%e A208855    2,  3      12   24    0   48   60    0   84   96    0  120 ...
%e A208855    3,  5      20   40   60   80    0  120  140  160  180    0 ...
%e A208855    4,  7      28   56   84  112  140  168    0  224  252  280 ...
%e A208855    5,  9      36   72    0  144  180    0  252  288    0  360 ...
%e A208855    6, 11      44   88  132  176  220  264  308  352  396  440 ...
%e A208855    7, 13      52  104  156  208  260  312  364  416  468  520 ...
%e A208855    8, 15      60  120    0  240    0    0  420  480    0    0 ...
%e A208855    9, 17      68  136  204  272  340  408  476  544  612  680 ...
%e A208855   10, 19      76  152  228  304  380  456  532  608  684  760 ...
%e A208855   ...
%e A208855 Triangle T(n,m):
%e A208855            m|  1    2    3    4    5    6    7    8    9   10 ...
%e A208855            v|  2    4    6    8   10   12   14   16   18   20 ...
%e A208855    n,  u
%e A208855    1,  1       4
%e A208855    2,  3      12    8
%e A208855    3,  5      20   24   12
%e A208855    4,  7      28   40    0   16
%e A208855    5,  9      36   56   60   48   20
%e A208855    6, 11      44   72   84   80   60   24
%e A208855    7, 13      52   88    0  112    0    0   28
%e A208855    8, 15      60  104  132  144  140  120   84   32
%e A208855    9, 17      68  120  156  176  180  168  140   96   36
%e A208855   10, 19      76  136    0  208  220    0    0  160    0   40
%e A208855   ...
%e A208855 For some triples see the example section of A208853.
%t A208855 A208855[n_, m_] := If[CoprimeQ[#, 2*m], 4*m*#, 0] & [2*(n-m) + 1];
%t A208855 Table[A208855[n, m], {n, 15}, {m, n}] (* _Paolo Xausa_, Feb 12 2025 *)
%Y A208855 Cf. A208853, A208854.
%K A208855 nonn,easy,tabl
%O A208855 1,1
%A A208855 _Wolfdieter Lang_, Mar 05 2012