cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A208858 Number of n X 2 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

2, 11, 127, 1691, 23047, 315203, 4313071, 59022155, 807696535, 11053048211, 151257183487, 2069902880411, 28325913895207, 387630456564323, 5304590398318351, 72591507756551915, 993389989178417335
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2012

Keywords

Comments

Column 2 of A208864.

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..0....0..1....0..0....0..0....0..0....0..0....0..1
..0..1....0..1....1..1....1..1....1..0....0..1....0..1....1..1....0..1....1..2
..0..2....1..0....0..2....2..0....0..1....0..1....1..2....0..0....1..0....3..3
..1..3....1..2....2..0....1..2....0..1....0..2....2..0....0..1....2..2....3..1
		

Crossrefs

Cf. A208864.

Formula

Empirical: a(n) = 17*a(n-1) - 48*a(n-2) + 36*a(n-3) for n>4.
Empirical g.f.: x*(2 - 23*x + 36*x^2 - 12*x^3) / ((1 - 2*x)*(1 - 15*x + 18*x^2)). - Colin Barker, Jul 07 2018

A208859 Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

5, 127, 5796, 273049, 12883280, 607924387, 28686344276, 1353633375649, 63874412830520, 3014066220322507, 142225889552418956, 6711267165754821049, 316687117317930292160, 14943635501046735026227, 705151014286332805949636
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2012

Keywords

Comments

Column 3 of A208864.

Examples

			Some solutions for n=4:
..0..1..1....0..1..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..1..0....0..2..2....0..1..1....0..1..1....0..1..1....0..1..1....1..1..1
..0..1..2....1..2..1....0..1..2....2..1..2....1..2..0....2..1..2....0..2..0
..3..2..1....1..3..2....2..0..2....0..2..1....1..0..1....2..1..2....0..1..0
		

Crossrefs

Cf. A208864.

Formula

Empirical: a(n) = 59*a(n-1) - 603*a(n-2) + 2211*a(n-3) - 2826*a(n-4) + 720*a(n-5) for n>6.
Empirical g.f.: x*(5 - 168*x + 1318*x^2 - 3389*x^3 + 1710*x^4 - 240*x^5) / ((1 - 2*x)*(1 - 57*x + 489*x^2 - 1233*x^3 + 360*x^4)). - Colin Barker, Jul 07 2018

A208860 Number of nX4 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

15, 1691, 273049, 44452082, 7240366702, 1179377179523, 192108983085145, 31292693945057258, 5097277404701734234, 830297232890575975631, 135247396001465780031025, 22030493903508619572329906
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 4 of A208864

Examples

			Some solutions for n=4
..0..0..1..0....0..0..1..2....0..0..0..0....0..1..1..0....0..0..0..1
..0..2..2..0....0..3..3..0....1..1..1..1....0..1..2..0....1..1..1..2
..2..3..3..0....1..0..1..2....2..2..2..3....0..2..1..1....2..2..2..0
..1..2..0..2....1..2..0..0....0..1..3..0....3..1..0..0....0..3..0..1
		

Formula

Empirical: a(n) = 219*a(n-1) -10289*a(n-2) +197167*a(n-3) -1651023*a(n-4) +4615685*a(n-5) +5157645*a(n-6) -45444123*a(n-7) +78064236*a(n-8) -63363708*a(n-9) +40081392*a(n-10) -18662400*a(n-11) for n>12

A208861 Number of nX5 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

51, 23047, 12883280, 7240366702, 4071491223248, 2289701830963879, 1287681340443915644, 724166398812363542260, 407256849342915985761092, 229033195050822330468202369, 128803738036903910358389563556
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 5 of A208864

Examples

			Some solutions for n=4
..0..0..0..0..1....0..0..0..0..0....0..1..0..0..0....0..1..1..0..0
..1..1..1..2..1....0..1..1..2..2....1..0..1..1..1....0..1..2..0..1
..2..3..0..1..2....2..2..3..2..3....1..0..2..3..2....3..2..3..1..2
..0..0..1..3..0....3..1..1..2..1....3..2..3..1..1....2..0..1..0..0
		

Formula

Empirical: a(n) = 831*a(n-1) -179993*a(n-2) +17822337*a(n-3) -914949819*a(n-4) +23168761555*a(n-5) -161356715633*a(n-6) -4487021565447*a(n-7) +88170625092243*a(n-8) -89146256087223*a(n-9) -9123849468343275*a(n-10) +57411954474413179*a(n-11) +280936943350232287*a(n-12) -3595338835588287543*a(n-13) +1929659835323795485*a(n-14) +90093226296032329771*a(n-15) -288134852946702870262*a(n-16) -742914836218346528932*a(n-17) +7115855576376274368216*a(n-18) -24955774603971431557536*a(n-19) +63937383750208880620992*a(n-20) -111375370598187857506560*a(n-21) +72057203548966403859456*a(n-22) +76274285418217337610240*a(n-23) -111975434876548575756288*a(n-24) +5300659781619687751680*a(n-25) +29374280040899283517440*a(n-26) -7836898836947747733504*a(n-27) for n>28

A208862 Number of nX6 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

187, 315203, 607924387, 1179377179523, 2289701830963879, 4445765748006060562, 8632160191264007914496, 16760735467624113550972052, 32543685580973709708760951442, 63188843847651604770766546682829
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 6 of A208864

Examples

			Some solutions for n=4
..0..1..0..0..2..2....0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..0
..1..2..1..1..3..3....0..1..2..1..3..2....0..1..1..1..2..1....1..2..1..1..1..3
..0..3..3..0..1..0....1..3..0..3..1..0....0..1..0..2..3..1....1..3..3..2..2..3
..2..1..1..2..1..2....2..1..0..3..0..3....0..3..1..0..1..0....0..1..0..0..1..0
		

A208863 Number of nX7 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

715, 4313071, 28686344276, 192108983085145, 1287681340443915644, 8632160191264007914496, 57867813487534623493632032, 387931894337100662003223085624, 2600602689186684798782025006594196
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 7 of A208864

Examples

			Some solutions for n=4
..0..0..1..2..1..1..3....0..1..2..3..0..1..2....0..0..0..0..0..0..1
..2..1..3..3..0..2..3....0..1..2..3..0..2..0....1..1..1..1..1..1..0
..2..1..2..2..1..1..0....3..0..2..0..3..1..1....2..3..2..2..2..0..3
..2..0..3..0..0..2..1....2..0..2..0..1..0..3....3..0..1..0..0..3..2
		

A208857 Number of n X n 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

1, 11, 5796, 44452082, 4071491223248, 4445765748006060562, 57867813487534623493632032, 8978812485595759770697498996138448
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Diagonal of A208864

Examples

			Some solutions for n=4
..0..1..0..0....0..0..1..0....0..0..0..1....0..0..0..1....0..1..1..2
..2..2..1..2....2..1..2..2....1..1..1..2....0..1..1..0....0..1..0..0
..1..1..3..2....1..3..0..0....2..2..2..0....0..1..2..3....0..1..3..1
..0..3..0..0....1..3..2..2....0..3..0..1....3..0..3..1....1..2..2..0
		
Showing 1-7 of 7 results.