cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A208866 Number of n X 2 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

2, 12, 143, 1979, 28246, 405481, 5826959, 83752328, 1203835147, 17303737555, 248721498050, 3575088704597, 51387836750983, 738641752044964, 10617135747615911, 152609260439813291, 2193584684852893774
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2012

Keywords

Comments

Column 2 of A208872.

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..1....0..0
..1..0....1..0....1..0....1..1....1..0....1..0....1..1....1..2....1..2....1..1
..1..2....1..0....1..1....0..0....0..2....0..1....2..1....3..3....0..1....2..0
..3..2....2..2....2..0....1..0....1..3....1..2....0..3....0..1....0..0....1..1
		

Crossrefs

Cf. A208872.

Formula

Empirical: a(n) = 18*a(n-1) - 55*a(n-2) + 42*a(n-3) - 9*a(n-4) for n>5.
Empirical g.f.: x*(2 - 24*x + 37*x^2 - 19*x^3 + 3*x^4) / ((1 - 3*x + x^2)*(1 - 15*x + 9*x^2)). - Colin Barker, Jul 07 2018

A208867 Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

5, 136, 6520, 324682, 16205218, 808928836, 40380275500, 2015711853262, 100620769519078, 5022810805035976, 250729829501722000, 12515989521112631602, 624776054783641480618, 31187715359825604175756
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2012

Keywords

Comments

Column 3 of A208872.

Examples

			Some solutions for n=4:
..0..1..0....0..0..0....0..0..0....0..1..1....0..1..0....0..0..1....0..1..1
..0..2..3....1..1..2....1..1..1....1..0..2....0..2..2....1..0..0....1..0..0
..3..0..0....2..1..1....2..0..2....3..0..1....1..3..1....0..1..1....0..1..0
..2..1..3....0..2..1....2..1..0....1..2..1....1..3..2....1..2..3....1..0..1
		

Crossrefs

Cf. A208872.

Formula

Empirical: a(n) = 55*a(n-1) -261*a(n-2) +369*a(n-3) -162*a(n-4) for n>5.
Empirical g.f.: x*(5 - 139*x + 345*x^2 - 267*x^3 + 54*x^4) / ((1 - x)*(1 - 3*x)*(1 - 51*x + 54*x^2)). - Colin Barker, Jul 07 2018

A208868 Number of nX4 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

15, 1798, 307165, 52947540, 9130195864, 1574432811027, 271499374919883, 46818078167209471, 8073434644321782464, 1392204668383719239473, 240075497495975972163390, 41399261047580372916745574
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 4 of A208872

Examples

			Some solutions for n=4
..0..0..1..0....0..1..1..2....0..1..0..0....0..0..1..2....0..0..0..1
..1..2..2..0....0..2..0..0....2..2..1..2....1..3..3..0....1..1..2..0
..2..3..3..0....0..1..3..0....1..2..3..2....1..0..1..2....0..1..1..3
..1..2..3..2....1..2..2..0....0..3..0..0....1..2..0..0....3..0..3..1
		

Formula

Empirical: a(n) = 198*a(n-1) -4637*a(n-2) +40574*a(n-3) -164314*a(n-4) +321776*a(n-5) -281785*a(n-6) +85300*a(n-7) -8100*a(n-8) for n>9

A208869 Number of nX5 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

51, 24472, 14493405, 8624977114, 5134914951163, 3057224057476808, 1820216057105650386, 1083724145919960847502, 645230025599333921071976, 384158448692090971917060268, 228721088397696942173901117684
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 5 of A208872

Examples

			Some solutions for n=4
..0..0..1..2..0....0..0..0..0..0....0..0..0..0..0....0..1..1..0..0
..3..3..0..1..0....1..1..2..1..0....1..1..1..2..0....0..2..0..1..2
..1..2..1..2..0....2..3..1..3..3....2..0..2..0..1....1..1..3..1..0
..0..1..0..3..2....1..2..3..0..1....2..1..3..0..0....0..1..0..2..3
		

Formula

Empirical: a(n) = 698*a(n-1) -64930*a(n-2) +2349972*a(n-3) -40985428*a(n-4) +382137700*a(n-5) -2071312484*a(n-6) +7427716824*a(n-7) -22247002672*a(n-8) +65755191408*a(n-9) -163887803568*a(n-10) +277785052512*a(n-11) -285817496832*a(n-12) +164238606720*a(n-13) -46819296000*a(n-14) +4897760256*a(n-15) for n>16

A208870 Number of nX6 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

187, 334618, 683903931, 1404920207834, 2887736845657700, 5935974611645510227, 12201956787655438957014, 25082292111547260024518313, 51559059416667161930347967813, 105984596999356698511898369562313
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 6 of A208872

Examples

			Some solutions for n=4
..0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..1..2..3....0..0..0..0..0..1
..1..1..1..1..0..1....1..1..2..1..1..1....2..1..2..3..1..1....1..1..2..1..3..2
..0..0..0..2..3..1....0..1..2..0..3..2....1..0..2..1..3..3....2..3..0..3..1..0
..1..2..0..1..0..0....1..2..3..0..0..3....1..2..0..2..2..1....2..1..0..3..3..3
		

A208871 Number of nX7 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

715, 4578580, 32271626438, 228847686794351, 1624001903270517563, 11525604443642285224422, 81798476241280856702695038, 580533377647449287012352167379, 4120113916814898485216382089787455
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Column 7 of A208872

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0....0..1..1..2..0..1..0....0..0..0..0..1..2..1
..1..2..1..1..1..1..1....0..0..0..3..0..1..1....1..1..1..2..1..3..3
..1..0..3..2..2..2..3....2..1..2..2..1..0..3....2..2..0..2..2..1..2
..3..0..3..3..3..0..1....2..3..0..2..3..0..0....0..1..1..0..2..3..0
		

A208873 Number of 2 X n 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

2, 12, 136, 1798, 24472, 334618, 4578580, 62655190, 857412640, 11733394642, 160567489036, 2197311225838, 30069453572632, 411490201499818, 5631102858140740, 77059719245016070, 1054535937228511120
Offset: 1

Views

Author

R. H. Hardin, Mar 02 2012

Keywords

Comments

Row 2 of A208872.

Examples

			Some solutions for n=4:
..0..0..1..0....0..0..0..0....0..0..1..0....0..0..0..0....0..1..1..0
..1..2..2..0....1..1..1..0....1..0..1..0....1..1..1..2....0..0..2..0
		

Crossrefs

Cf. A208872.

Formula

Empirical: a(n) = 18*a(n-1) - 65*a(n-2) + 84*a(n-3) - 36*a(n-4) for n>5.
Empirical g.f.: 2*x*(1 - 12*x + 25*x^2 - 19*x^3 + 6*x^4) / ((1 - x)*(1 - 2*x)*(1 - 15*x + 18*x^2)). - Colin Barker, Jul 07 2018

A208874 Number of 3Xn 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

5, 143, 6520, 307165, 14493405, 683903931, 32271626438, 1522813452263, 71857577327143, 3390770839381669, 160001593732718856, 7550056082308516761, 356267369073405009281, 16811323900505484274607, 793282337427660173475274
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Row 3 of A208872

Examples

			Some solutions for n=4
..0..1..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..2..2..1..2....1..1..1..2....1..2..2..1....1..1..1..0....1..1..1..0
..1..2..3..2....2..0..1..3....1..0..1..2....0..0..1..1....2..2..3..2
		

Formula

Empirical: a(n) = 61*a(n-1) -722*a(n-2) +3476*a(n-3) -7851*a(n-4) +8583*a(n-5) -4266*a(n-6) +720*a(n-7) for n>8

A208875 Number of 4Xn 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

15, 1979, 324682, 52947540, 8624977114, 1404920207834, 228847686794351, 37277070892199501, 6072074518379364073, 989082262060956074133, 161111942886719306980432, 26243578660069203997974518
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Row 4 of A208872

Examples

			Some solutions for n=4
..0..1..1..1....0..0..1..0....0..1..1..0....0..0..0..1....0..0..0..0
..0..0..0..1....2..2..1..1....0..0..2..0....1..1..2..0....1..1..1..0
..1..1..0..0....3..2..0..1....1..2..1..1....0..1..1..3....0..0..1..1
..0..1..1..1....0..3..3..1....3..1..0..0....3..0..3..1....1..0..0..2
		

Formula

Empirical: a(n) = 222*a(n-1) -10949*a(n-2) +228692*a(n-3) -2273610*a(n-4) +10170544*a(n-5) -13839646*a(n-6) -45418980*a(n-7) +225253855*a(n-8) -439046430*a(n-9) +509809347*a(n-10) -407061936*a(n-11) +239595084*a(n-12) -96068592*a(n-13) +18662400*a(n-14) for n>16

A208876 Number of 5Xn 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

51, 28246, 16205218, 9130195864, 5134914951163, 2887736845657700, 1624001903270517563, 913306247364608338853, 513625349165806029159816, 288852734835443348518960257, 162445063843968446617446229944
Offset: 1

Views

Author

R. H. Hardin Mar 02 2012

Keywords

Comments

Row 5 of A208872

Examples

			Some solutions for n=4
..0..0..1..0....0..1..0..2....0..0..0..0....0..0..0..1....0..0..0..1
..2..3..1..0....0..3..3..0....1..2..2..1....2..3..2..0....1..1..2..1
..0..1..2..1....1..0..2..1....1..0..1..2....1..2..1..1....0..1..0..2
..1..2..3..3....1..2..1..2....2..2..1..0....1..0..2..1....2..1..0..3
..0..3..0..0....0..2..0..3....0..3..0..1....3..3..1..2....1..0..1..0
		

Formula

Empirical: a(n) = 835*a(n-1) -183323*a(n-2) +18547299*a(n-3) -987322450*a(n-4) +26936215656*a(n-5) -259592930108*a(n-6) -3698904511972*a(n-7) +105056981064194*a(n-8) -468082290224790*a(n-9) -8220453963894770*a(n-10) +93015305289328522*a(n-11) -3009215708038944*a(n-12) -4338208630525451740*a(n-13) +17757865170412343388*a(n-14) +59736218122280906604*a(n-15) -622267506833186033977*a(n-16) +938869955167775461259*a(n-17) +8000262558220637738773*a(n-18) -56634053288703764393173*a(n-19) +209139140116278936305898*a(n-20) -546065890364575413337540*a(n-21) +1008121942435233118210008*a(n-22) -1160912061971582376908448*a(n-23) +524709510887340807606720*a(n-24) +511243927003064543493888*a(n-25) -896720906468773868608512*a(n-26) +430645964613584885342208*a(n-27) +74415201590159365275648*a(n-28) -159217853403663932719104*a(n-29) +60721875388690274451456*a(n-30) -7836898836947747733504*a(n-31) for n>34
Showing 1-10 of 13 results. Next