A208876 Number of 5Xn 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.
51, 28246, 16205218, 9130195864, 5134914951163, 2887736845657700, 1624001903270517563, 913306247364608338853, 513625349165806029159816, 288852734835443348518960257, 162445063843968446617446229944
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..0....0..1..0..2....0..0..0..0....0..0..0..1....0..0..0..1 ..2..3..1..0....0..3..3..0....1..2..2..1....2..3..2..0....1..1..2..1 ..0..1..2..1....1..0..2..1....1..0..1..2....1..2..1..1....0..1..0..2 ..1..2..3..3....1..2..1..2....2..2..1..0....1..0..2..1....2..1..0..3 ..0..3..0..0....0..2..0..3....0..3..0..1....3..3..1..2....1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..202
Formula
Empirical: a(n) = 835*a(n-1) -183323*a(n-2) +18547299*a(n-3) -987322450*a(n-4) +26936215656*a(n-5) -259592930108*a(n-6) -3698904511972*a(n-7) +105056981064194*a(n-8) -468082290224790*a(n-9) -8220453963894770*a(n-10) +93015305289328522*a(n-11) -3009215708038944*a(n-12) -4338208630525451740*a(n-13) +17757865170412343388*a(n-14) +59736218122280906604*a(n-15) -622267506833186033977*a(n-16) +938869955167775461259*a(n-17) +8000262558220637738773*a(n-18) -56634053288703764393173*a(n-19) +209139140116278936305898*a(n-20) -546065890364575413337540*a(n-21) +1008121942435233118210008*a(n-22) -1160912061971582376908448*a(n-23) +524709510887340807606720*a(n-24) +511243927003064543493888*a(n-25) -896720906468773868608512*a(n-26) +430645964613584885342208*a(n-27) +74415201590159365275648*a(n-28) -159217853403663932719104*a(n-29) +60721875388690274451456*a(n-30) -7836898836947747733504*a(n-31) for n>34
Comments