cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208881 Number of words either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times.

This page as a plain text file.
%I A208881 #23 Jul 19 2017 19:50:30
%S A208881 1,2,30,560,11550,252252,5717712,133024320,3155170590,75957810500,
%T A208881 1850332263780,45508998487680,1128243920840400,28159366024288800,
%U A208881 706857555303576000,17831659928458210560,451781821468671694110,11489952898943726476500,293206575828601020085500
%N A208881 Number of words either empty or beginning with the first letter of the ternary alphabet, where each letter of the alphabet occurs n times.
%C A208881 Also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions.
%H A208881 Alois P. Heinz, <a href="/A208881/b208881.txt">Table of n, a(n) for n = 0..220</a>
%H A208881 J. Draisma, E. Horobet, G. Ottaviani, B. Sturmfels and R. K. Thomas, <a href="https://arxiv.org/abs/1309.0049">The Euclidean distance degree of an algebraic variety</a>, arXiv preprint arXiv: 1309.0049, 2013.
%F A208881 a(n) = (3*n)!/(3 * n!^3) for n>0, a(0) = 1.
%F A208881 a(n) = 2 * A060542(n) for n>0.
%F A208881 a(n) = A253283(2*n,n) for n>=0. - _Peter Luschny_, Mar 22 2015
%F A208881 n^2*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - _R. J. Mathar_, Nov 01 2015
%e A208881 a(0) = 1: the empty word.
%e A208881 a(1) = 2 = |{abc, acb}|.
%e A208881 a(2) = 30 = |{aabbcc, aabcbc, aabccb, aacbbc, aacbcb, aaccbb, ababcc, abacbc, abaccb, abbacc, abbcac, abbcca, abcabc, abcacb, abcbac, abcbca, abccab, abccba, acabbc, acabcb, acacbb, acbabc, acbacb, acbbac, acbbca, acbcab, acbcba, accabb, accbab, accbba}|.
%p A208881 a:= n-> `if`(n=0, 1, (3*n)!/(3*n!^3)):
%p A208881 seq(a(n), n=0..20);
%Y A208881 Column k=3 of A208879.
%Y A208881 Cf. A060542, A253283.
%K A208881 nonn,walk
%O A208881 0,2
%A A208881 _Alois P. Heinz_, Mar 02 2012