A208891 Pascal's triangle matrix augmented with a right border of 1's.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45
Offset: 0
Examples
First few rows of the triangle = 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 3, 3, 1, 1; 1, 4, 6, 4, 1, 1; 1, 5, 10, 10, 5, 1, 1; 1, 6, 15, 20, 15, 6, 1, 1; 1, 7, 21, 35, 35, 21, 7, 1, 1; 1, 8, 28, 56, 70, 56, 28, 8, 1, 1; 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1; 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1; ...
Programs
-
Maple
208891 := proc(n,k) if n <0 or k<0 or k>n then 0; elif n = k then 1 ; else binomial(n-1,k) ; end if; end proc: seq(seq(A208891(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 19 2024
Formula
T(n,n)=1. T(n,k) = A007318(n-1,k) for k
Comments