A208895 Number of non-congruent solutions to x^2 + y^2 + z^2 + t^2 == 1 (mod n).
1, 8, 24, 64, 120, 192, 336, 512, 648, 960, 1320, 1536, 2184, 2688, 2880, 4096, 4896, 5184, 6840, 7680, 8064, 10560, 12144, 12288, 15000, 17472, 17496, 21504, 24360, 23040, 29760, 32768, 31680, 39168, 40320, 41472, 50616, 54720, 52416, 61440, 68880, 64512
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv preprint arXiv:1404.4214 [math.NT], 2014.
- László Toth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), Article 14.11.6.
Programs
-
Maple
A208895 := proc(n) local a,pe,p,nu ; a := 1 ; for pe in ifactors(n)[2] do p := op(1,pe) ; nu := op(2,pe) ; if p > 2 then a := a*p^(3*nu)*(1-1/p^2) ; else a := a*8^nu ; end if; end do: a ; end proc: seq(A208895(n),n=1..20) ; # R. J. Mathar, Jun 23 2018
-
Mathematica
a[n_] := Length[Union[Flatten[Table[If[Mod[x^2 + y^2 + z^2 + t^2, n] == 1, {x, y, z, t}], {x, n}, {y, n}, {z, n}, {t, n}], 3]]] - 1; Join[{1}, Table[a[n], {n, 2, 30}]] f[p_, e_] := p^(3*e) * (1-1/p^2); f[2, e_] := 8^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 8^f[i,2], f[i,1]^(3*f[i,2]) * (1 - 1/f[i,1]^2))); } \\ Amiram Eldar, Oct 18 2022
Formula
Conjecture: a(n) = n*Sum_{d|2*n} d^2*mu(2*n/d)/3. - Gionata Neri, Feb 18 2018
From Amiram Eldar, Oct 18 2022: (Start)
Multiplicative with a(p^e) = p^(3*e)*(1-1/p^2) if p > 2, and a(2^e) = 8^e.
Sum_{k=1..n} a(k) ~ c * n^4 + O(n^3), where c = 2/(7*zeta(3)) = 0.237687... (Tóth, 2014). (End)