This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208904 #34 Aug 22 2015 01:57:18 %S A208904 1,3,1,5,6,1,7,19,9,1,9,44,42,12,1,11,85,138,74,15,1,13,146,363,316, %T A208904 115,18,1,15,231,819,1059,605,165,21,1,17,344,1652,2984,2470,1032,224, %U A208904 24,1,19,489,3060,7380,8378,4974,1624,292,27,1,21,670,5301,16488 %N A208904 Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section. %C A208904 For a discussion and guide to related arrays, see A208510. %C A208904 Riordan array ((1+x)/(1-x)^2, x(1+x)/(1-x)^2) (follows from Kruchinin formula). - _Ralf Stephan_, Jan 02 2014 %C A208904 From _Peter Bala_, Jul 21 2014: (Start) %C A208904 Let M denote the lower unit triangular array A099375 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array %C A208904 /I_k 0\ %C A208904 \ 0 M/ %C A208904 having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End) %F A208904 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208904 v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1, %F A208904 where u(1,x)=1, v(1,x)=1. %F A208904 From _Vladimir Kruchinin_, Mar 11 2013: (Start) %F A208904 T(n,k) = sum(i=0..n, binomial(i+k-1,2*k-1)*binomial(k,n-i)) %F A208904 ((x+x^2)/(1-x)^2)^k = sum(n>=k, T(n,k)*x^n). %F A208904 T(n,2)=A005900(n). %F A208904 T(2*n-1,n) / n = A003169(n). %F A208904 T(2*n,n) = A156894(n), n>1. %F A208904 sum(k=1..n, T(n,k)) = A003946(n). %F A208904 sum(k=1..n, T(n,k)*(-1)^(n+k)) = A078050(n). %F A208904 n*sum(k=1..n, T(n,k)/k) = A058481(n). (End) %F A208904 Recurrence: T(n+1,k+1) = sum {i = 0..n-k} (2*i + 1)*T(n-i,k). - _Peter Bala_, Jul 21 2014 %e A208904 First five rows: %e A208904 1 %e A208904 3...1 %e A208904 5...6....1 %e A208904 7...19...9....1 %e A208904 9...44...42...12...1 %e A208904 First five polynomials v(n,x): %e A208904 1 %e A208904 3 + x %e A208904 5 + 6x + x^2 %e A208904 7 + 19x + 9x^2 + x^3 %e A208904 9 + 44x + 42x^2 + 12x^3 + x^4 %e A208904 From _Peter Bala_, Jul 21 2014: (Start) %e A208904 With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins %e A208904 /1 \/1 \/1 \ /1 \ %e A208904 |3 1 ||0 1 ||0 1 | |3 1 | %e A208904 |5 3 1 ||0 3 1 ||0 0 1 |... = |5 6 1 | %e A208904 |7 5 3 1 ||0 5 3 1 ||0 0 3 1 | |7 19 9 1 | %e A208904 |9 7 5 3 1||0 7 5 3 1||0 0 5 3 1| |9 44 42 12 1 | %e A208904 |... ||... ||... | |... %e A208904 (End) %t A208904 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208904 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208904 v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A208904 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208904 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208904 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208904 TableForm[cu] %t A208904 Flatten[%] (* A208660 *) %t A208904 Table[Expand[v[n, x]], {n, 1, z}] %t A208904 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208904 TableForm[cv] %t A208904 Flatten[%] (* A208904 *) %Y A208904 Cf. A208660, A208510. A099375. %K A208904 nonn,tabl %O A208904 1,2 %A A208904 _Clark Kimberling_, Mar 03 2012