This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208906 #5 Mar 30 2012 18:58:14 %S A208906 1,2,1,3,2,2,4,3,8,2,5,4,20,8,4,6,5,40,20,24,4,7,6,70,40,84,24,8,8,7, %T A208906 112,70,224,84,64,8,9,8,168,112,504,224,288,64,16,10,9,240,168,1008, %U A208906 504,960,288,160,16,11,10,330,240,1848,1008,2640,960,880,160,32 %N A208906 Triangle of coefficients of polynomials v(n,x) jointly generated with A208905; see the Formula section. %C A208906 For a discussion and guide to related arrays, see A208510. %F A208906 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208906 v(n,x)=x*u(n-1,x)+v(n-1,x)+1, %F A208906 where u(1,x)=1, v(1,x)=1. %e A208906 First five rows: %e A208906 1 %e A208906 2...1 %e A208906 3...2...2 %e A208906 4...3...8....2 %e A208906 5...4...20...8...4 %e A208906 First five polynomials v(n,x): %e A208906 1 %e A208906 2 + x %e A208906 3 + 2x + 2x^2 %e A208906 4 + 3x + 8x^2 + 2x^3 %e A208906 5 + 4x + 20x^2 + 8x^3 + 4x^4 %t A208906 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208906 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208906 v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; %t A208906 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208906 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208906 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208906 TableForm[cu] %t A208906 Flatten[%] (* A208905 *) %t A208906 Table[Expand[v[n, x]], {n, 1, z}] %t A208906 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208906 TableForm[cv] %t A208906 Flatten[%] (* A208906 *) %Y A208906 Cf. A208905, A208510. %K A208906 nonn,tabl %O A208906 1,2 %A A208906 _Clark Kimberling_, Mar 03 2012