This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208907 #5 Mar 30 2012 18:58:14 %S A208907 1,1,2,1,4,4,1,6,8,8,1,8,12,20,16,1,10,16,36,44,32,1,12,20,56,84,100, %T A208907 64,1,14,24,80,136,212,220,128,1,16,28,108,200,376,500,484,256,1,18, %U A208907 32,140,276,600,936,1188,1052,512,1,20,36,176,364,892,1560 %N A208907 Triangle of coefficients of polynomials u(n,x) jointly generated with A208756; see the Formula section. %C A208907 For a discussion and guide to related arrays, see A208510. %F A208907 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208907 v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1, %F A208907 where u(1,x)=1, v(1,x)=1. %e A208907 First five rows: %e A208907 1 %e A208907 1...2 %e A208907 1...4...4 %e A208907 1...6...8....8 %e A208907 1...8...12...20...16 %e A208907 First five polynomials u(n,x): %e A208907 1 %e A208907 1 + 2x %e A208907 1 + 4x + 4x^2 %e A208907 1 + 6x + 8x^2 + 8x^3 %e A208907 1 + 8x + 12x^2 + 20x^3 + 16x^4 %t A208907 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208907 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208907 v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; %t A208907 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208907 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208907 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208907 TableForm[cu] %t A208907 Flatten[%] (* A208907 *) %t A208907 Table[Expand[v[n, x]], {n, 1, z}] %t A208907 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208907 TableForm[cv] %t A208907 Flatten[%] (* A208756 *) %Y A208907 Cf. A208756, A208510. %K A208907 nonn,tabl %O A208907 1,3 %A A208907 _Clark Kimberling_, Mar 03 2012