A208908 Triangle of coefficients of polynomials v(n,x) jointly generated with A208923; see the Formula section.
1, 2, 2, 2, 5, 4, 2, 9, 15, 8, 2, 13, 33, 37, 16, 2, 17, 59, 103, 91, 32, 2, 21, 93, 221, 297, 213, 64, 2, 25, 135, 407, 739, 807, 491, 128, 2, 29, 185, 677, 1553, 2285, 2105, 1109, 256, 2, 33, 243, 1047, 2907, 5391, 6675, 5319, 2475, 512, 2, 37, 309, 1533
Offset: 1
Examples
First five rows: 1 2...2 2...5....4 2...9...15...8 2...13...33...37...16 First five polynomials v(n,x): 1 2 + 2x 2 + 5x + 4x^2 2 + 9x + 15x^2 + 8x^3 2 + 13x + 33x^2 + 37x^3 + 16x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208923 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208908 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments