This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208909 #5 Mar 30 2012 18:58:14 %S A208909 1,1,2,1,6,6,1,10,20,16,1,14,42,68,44,1,18,72,172,220,120,1,22,110, %T A208909 344,648,696,328,1,26,156,600,1480,2336,2160,896,1,30,210,956,2900, %U A208909 5984,8128,6608,2448,1,34,272,1428,5124,12984,23056,27536,19984 %N A208909 Triangle of coefficients of polynomials u(n,x) jointly generated with A208930; see the Formula section. %C A208909 For a discussion and guide to related arrays, see A208510. %F A208909 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208909 v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1, %F A208909 where u(1,x)=1, v(1,x)=1. %e A208909 First five rows: %e A208909 1 %e A208909 1...2 %e A208909 1...6...6 %e A208909 1...10...20...16 %e A208909 1...14...42...68...44 %e A208909 First five polynomials u(n,x): %e A208909 1 %e A208909 1 + 2x %e A208909 1 + 6x + 6x^2 %e A208909 1 + 10x + 20x^2 + 16x^3 %e A208909 1 + 14x + 42x^2 + 68x^3 + 44x^4 %t A208909 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208909 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208909 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A208909 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208909 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208909 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208909 TableForm[cu] %t A208909 Flatten[%] (* A208909 *) %t A208909 Table[Expand[v[n, x]], {n, 1, z}] %t A208909 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208909 TableForm[cv] %t A208909 Flatten[%] (* A208930 *) %Y A208909 Cf. A208909, A208510. %K A208909 nonn,tabl %O A208909 1,3 %A A208909 _Clark Kimberling_, Mar 04 2012