A208910 Triangle of coefficients of polynomials v(n,x) jointly generated with A208755; see the Formula section.
1, 1, 3, 1, 3, 8, 1, 3, 10, 22, 1, 3, 12, 32, 60, 1, 3, 14, 42, 100, 164, 1, 3, 16, 52, 144, 308, 448, 1, 3, 18, 62, 192, 480, 936, 1224, 1, 3, 20, 72, 244, 680, 1568, 2816, 3344, 1, 3, 22, 82, 300, 908, 2352, 5040, 8400, 9136, 1, 3, 24, 92, 360, 1164, 3296
Offset: 1
Examples
First five rows: 1; 1, 3; 1, 3, 8; 1, 3, 10, 22; 1, 3, 12, 32, 60; First five polynomials v(n,x): 1 1 + 3x 1 + 3x + 8x^2 1 + 3x + 10x^2 + 22x^3 1 + 3x + 12x^2 + 32x^3 + 60x^4 From _Philippe Deléham_, Apr 01 2012: (Start) (1, 0, -1, 1, 0, 0, ...) DELTA (0, 3, -1/3, -2/3, 0, 0, ...) begins: 1; 1, 0; 1, 3, 0; 1, 3, 8, 0; 1, 3, 10, 22, 0; 1, 3, 12, 32, 60, 0; 1, 3, 14, 42, 100, 164, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208755 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208910 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = x*u(n-1,x) + 2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 01 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 - 2*y*x + 3*y*x^2 - 2*y^2*x^2)/(1 - x - 2*y*x + 2*y*x^2 - 2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 3, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments