This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208911 #5 Mar 30 2012 18:58:14 %S A208911 1,1,2,1,6,4,1,12,14,8,1,20,32,38,16,1,30,60,110,90,32,1,42,100,250, %T A208911 300,214,64,1,56,154,490,770,826,490,128,1,72,224,868,1680,2408,2128, %U A208911 1110,256,1,90,312,1428,3276,5880,6888,5382,2474,512,1,110,420 %N A208911 Triangle of coefficients of polynomials u(n,x) jointly generated with A208912; see the Formula section. %C A208911 For a discussion and guide to related arrays, see A208510. %F A208911 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208911 v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A208911 where u(1,x)=1, v(1,x)=1. %e A208911 First five rows: %e A208911 1 %e A208911 1...2 %e A208911 1...6....4 %e A208911 1...12...14...8 %e A208911 1...20...32...38...16 %e A208911 First five polynomials u(n,x): %e A208911 1 %e A208911 1 + 2x %e A208911 1 + 6x + 4x^2 %e A208911 1 + 12x + 14x^2 + 8x^3 %e A208911 1 + 20x + 32x^2 + 38x^3 + 16x^4 %t A208911 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208911 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208911 v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A208911 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208911 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208911 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208911 TableForm[cu] %t A208911 Flatten[%] (* A208911 *) %t A208911 Table[Expand[v[n, x]], {n, 1, z}] %t A208911 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208911 TableForm[cv] %t A208911 Flatten[%] (* A208912 *) %Y A208911 Cf. A208912, A208510. %K A208911 nonn,tabl %O A208911 1,3 %A A208911 _Clark Kimberling_, Mar 03 2012