This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208914 #5 Mar 30 2012 18:58:14 %S A208914 1,2,2,3,4,4,4,6,16,8,5,8,40,32,16,6,10,80,80,96,32,7,12,140,160,336, %T A208914 192,64,8,14,224,280,896,672,512,128,9,16,336,448,2016,1792,2304,1024, %U A208914 256,10,18,480,672,4032,4032,7680,4608,2560,512,11,20,660,960 %N A208914 Triangle of coefficients of polynomials v(n,x) jointly generated with A208913; see the Formula section. %C A208914 For a discussion and guide to related arrays, see A208510. %F A208914 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208914 v(n,x)=2x*u(n-1,x)+v(n-1,x)+1, %F A208914 where u(1,x)=1, v(1,x)=1. %e A208914 First five rows: %e A208914 1 %e A208914 2...2 %e A208914 3...4...4 %e A208914 4...6...16...8 %e A208914 5...8...40...32...16 %e A208914 First five polynomials v(n,x): %e A208914 1 %e A208914 2 + 2x %e A208914 3 + 4x + 4x^2 %e A208914 4 + 6x + 16x^2 + 8x^3 %e A208914 5 + 8x + 40x^2 + 32x^3 + 16x^4 %t A208914 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208914 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208914 v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1; %t A208914 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208914 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208914 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208914 TableForm[cu] %t A208914 Flatten[%] (* A208913 *) %t A208914 Table[Expand[v[n, x]], {n, 1, z}] %t A208914 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208914 TableForm[cv] %t A208914 Flatten[%] (* A208914 *) %Y A208914 Cf. A208913, A208510. %K A208914 nonn,tabl %O A208914 1,2 %A A208914 _Clark Kimberling_, Mar 03 2012