This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208918 #5 Mar 30 2012 18:58:14 %S A208918 1,1,4,1,4,12,1,4,16,40,1,4,20,64,128,1,4,24,88,240,416,1,4,28,112, %T A208918 368,896,1344,1,4,32,136,512,1504,3264,4352,1,4,36,160,672,2240,5952, %U A208918 11776,14080,1,4,40,184,848,3104,9472,23168,41984,45568,1,4,44 %N A208918 Triangle of coefficients of polynomials v(n,x) jointly generated with A208917; see the Formula section. %C A208918 For a discussion and guide to related arrays, see A208510. %F A208918 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208918 v(n,x)=2x*u(n-1,x)+2x*v(n-1,x)+1, %F A208918 where u(1,x)=1, v(1,x)=1. %e A208918 First five rows: %e A208918 1 %e A208918 1...4 %e A208918 1...4...12 %e A208918 1...4...16...40 %e A208918 1...4...20...64...128 %e A208918 First five polynomials v(n,x): %e A208918 1 %e A208918 1 + 4x %e A208918 1 + 4x + 12x^2 %e A208918 1 + 4x + 16x^2 + 40x^3 %e A208918 1 + 4x + 20x^2 + 64x^3 + 128x^4 %t A208918 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208918 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208918 v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A208918 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208918 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208918 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208918 TableForm[cu] %t A208918 Flatten[%] (* A208917 *) %t A208918 Table[Expand[v[n, x]], {n, 1, z}] %t A208918 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208918 TableForm[cv] %t A208918 Flatten[%] (* A208918 *) %Y A208918 Cf. A208917, A208510. %K A208918 nonn,tabl %O A208918 1,3 %A A208918 _Clark Kimberling_, Mar 04 2012