This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208919 #6 Mar 30 2012 18:58:14 %S A208919 1,1,2,1,6,6,1,12,20,14,1,20,44,66,38,1,30,80,190,208,94,1,42,130,430, %T A208919 678,622,246,1,56,196,840,1708,2380,1852,622,1,72,280,1484,3668,6888, %U A208919 7928,5338,1606,1,90,384,2436,7056,16716,25344,25650,15336 %N A208919 Triangle of coefficients of polynomials u(n,x) jointly generated with A208920; see the Formula section. %C A208919 For a discussion and guide to related arrays, see A208510. %F A208919 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208919 v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A208919 where u(1,x)=1, v(1,x)=1. %e A208919 First five rows: %e A208919 1 %e A208919 1...2 %e A208919 1...6....6 %e A208919 1...12...20...14 %e A208919 1...20...44...66...38 %e A208919 First five polynomials u(n,x): %e A208919 1 %e A208919 1 + 2x %e A208919 1 + 6x + 6x^2 %e A208919 1 + 12x + 20x^2 + 14x^3 %e A208919 1 + 20x + 44x^2 + 66x^3 + 38x^4 %t A208919 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208919 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208919 v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A208919 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208919 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208919 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208919 TableForm[cu] %t A208919 Flatten[%] (* A208919 *) %t A208919 Table[Expand[v[n, x]], {n, 1, z}] %t A208919 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208919 TableForm[cv] %t A208919 Flatten[%] (* A208920 *) %Y A208919 Cf. A208920, A208510. %K A208919 nonn,tabl %O A208919 1,3 %A A208919 _Clark Kimberling_, Mar 04 2012