This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208921 #7 Mar 30 2012 18:58:14 %S A208921 1,1,2,1,8,2,1,18,10,4,1,32,36,28,4,1,50,100,108,36,8,1,72,230,324, %T A208921 196,80,8,1,98,462,840,772,440,104,16,1,128,840,1960,2456,1840,752, %U A208921 208,16,1,162,1416,4200,6744,6464,3824,1488,272,32,1,200,2250,8376 %N A208921 Triangle of coefficients of polynomials u(n,x) jointly generated with A208922; see the Formula section. %C A208921 For a discussion and guide to related arrays, see A208510. %F A208921 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208921 v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1, %F A208921 where u(1,x)=1, v(1,x)=1. %e A208921 First five rows: %e A208921 1 %e A208921 1...2 %e A208921 1...8....2 %e A208921 1...18...10...4 %e A208921 1...32...36...28...4 %e A208921 First five polynomials u(n,x): %e A208921 1 %e A208921 1 + 2x %e A208921 1 + 8x + 2x^2 %e A208921 1 + 18x + 10x^2 + 4x^3 %e A208921 1 + 32x + 36x^2 + 28x^3 + 4x^4 %t A208921 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208921 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208921 v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; %t A208921 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208921 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208921 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208921 TableForm[cu] %t A208921 Flatten[%] (* A208921 *) %t A208921 Table[Expand[v[n, x]], {n, 1, z}] %t A208921 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208921 TableForm[cv] %t A208921 Flatten[%] (* A208922 *) %Y A208921 Cf. A208922, A208510. %K A208921 nonn,tabl %O A208921 1,3 %A A208921 _Clark Kimberling_, Mar 04 2012