A208923 Triangle of coefficients of polynomials u(n,x) jointly generated with A208908; see the Formula section.
1, 1, 2, 1, 6, 4, 1, 10, 14, 8, 1, 14, 32, 38, 16, 1, 18, 58, 104, 90, 32, 1, 22, 92, 222, 296, 214, 64, 1, 26, 134, 408, 738, 808, 490, 128, 1, 30, 184, 678, 1552, 2286, 2104, 1110, 256, 1, 34, 242, 1048, 2906, 5392, 6674, 5320, 2474, 512, 1, 38, 308
Offset: 1
Examples
First five rows: 1 1...2 1...6....4 1...10...14...8 1...14...32...38...16 First five polynomials u(n,x): 1 1 + 2x 1 + 6x + 4x^2 1 + 10x + 14x^2 + 8x^3 1 + 14x + 32x^2 + 38x^3 + 16x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208923 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208908 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments