This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208931 #5 Mar 30 2012 18:58:14 %S A208931 1,1,2,1,8,4,1,18,20,8,1,32,64,56,16,1,50,160,224,136,32,1,72,340,680, %T A208931 664,328,64,1,98,644,1736,2416,1872,760,128,1,128,1120,3920,7264,7856, %U A208931 4984,1736,256,1,162,1824,8064,19056,26992,23768,12832,3896 %N A208931 Triangle of coefficients of polynomials u(n,x) jointly generated with A208932; see the Formula section. %C A208931 For a discussion and guide to related arrays, see A208510. %F A208931 u(n,x)=u(n-1,x)+2x*v(n-1,x), %F A208931 v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1, %F A208931 where u(1,x)=1, v(1,x)=1. %e A208931 First five rows: %e A208931 1 %e A208931 1...2 %e A208931 1...8....4 %e A208931 1...18...20...8 %e A208931 1...32...64...56...16 %e A208931 First five polynomials u(n,x): %e A208931 1 %e A208931 1 + 2x %e A208931 1 + 8x + 4x^2 %e A208931 1 + 18x + 20x^2 + 8x^3 %e A208931 1 + 32x + 64x^2 + 56x^3 + 16x^4 %t A208931 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A208931 u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; %t A208931 v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; %t A208931 Table[Expand[u[n, x]], {n, 1, z/2}] %t A208931 Table[Expand[v[n, x]], {n, 1, z/2}] %t A208931 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A208931 TableForm[cu] %t A208931 Flatten[%] (* A208931 *) %t A208931 Table[Expand[v[n, x]], {n, 1, z}] %t A208931 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A208931 TableForm[cv] %t A208931 Flatten[%] (* A208932 *) %Y A208931 Cf. A208931, A208510. %K A208931 nonn,tabl %O A208931 1,3 %A A208931 _Clark Kimberling_, Mar 04 2012