A208932 Triangle of coefficients of polynomials v(n,x) jointly generated with A208932; see the Formula section.
1, 3, 2, 5, 8, 4, 7, 22, 24, 8, 9, 48, 84, 60, 16, 11, 90, 228, 264, 148, 32, 13, 152, 528, 876, 772, 348, 64, 15, 238, 1092, 2424, 2992, 2112, 804, 128, 17, 352, 2072, 5896, 9568, 9392, 5548, 1820, 256, 19, 498, 3672, 13008, 26648, 34080, 27780
Offset: 1
Examples
First five rows: 1 3...2 5...8....4 7...22...24...8 9...48...84...60...16 First five polynomials v(n,x): 1 3 + 2x 5 + 8x + 4x^2 7 + 22x + 24x^2 + 8x^3 9 + 48x + 84x^2 + 60x^3 + 16x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208931 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208932 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments