This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208961 #11 Jul 24 2025 19:38:41 %S A208961 1,1,-4,33,-376,5255,-85392,1566656,-31869104,710089551,-17178977940, %T A208961 448256023501,-12548355934560,375195009917364,-11936772609109600, %U A208961 402740733371490540,-14367278506882083936,540452504929440595503,-21384560213508955184172 %N A208961 G.f. satisfies: A(x) = 1 + x*[d/dx x/A(x)^2]. %H A208961 Vaclav Kotesovec, <a href="/A208961/b208961.txt">Table of n, a(n) for n = 0..350</a> %F A208961 G.f. A(x) satisfies: [x^n] A(x)^(2*n) = [x^n] A(x)^(2*n+1) for n>=2. %F A208961 a(n) ~ c * (-1)^(n+1) * n! * 2^n * n^(3/2), where c = 0.18828692660370683384... - _Vaclav Kotesovec_, Feb 22 2014 %e A208961 G.f.: A(x) = 1 + x - 4*x^2 + 33*x^3 - 376*x^4 + 5255*x^5 - 85392*x^6 +... %e A208961 where %e A208961 1/A(x)^2 = 1 - 2*x + 11*x^2 - 94*x^3 + 1051*x^4 - 14232*x^5 +... %e A208961 The coefficients in A(x)^n begin: %e A208961 n=1: [1, 1, -4, 33, -376, 5255, -85392, 1566656, ...]; %e A208961 n=2: [1, 2, -7, 58, -670, 9494, -156177, 2895672, ...]; %e A208961 n=3: [1, 3, -9, 76, -894, 12864, -214339, 4016688, ...]; %e A208961 n=4: [1, 4,(-10),88, -1059, 15496, -261634, 4956000, ...]; %e A208961 n=5: [1, 5,(-10),95, -1175, 17506, -299610, 5736885, ...]; %e A208961 n=6: [1, 6, -9,(98),-1251, 18996, -329626, 6379902, ...]; %e A208961 n=7: [1, 7, -7,(98),-1295, 20055, -352870, 6903170, ...]; %e A208961 n=8: [1, 8, -4, 96,(-1314),20760, -370376, 7322624, ...]; %e A208961 n=9: [1, 9, 0, 93,(-1314),21177, -383040, 7652250, ...]; %e A208961 n=10:[1,10, 5, 90, -1300,(21362),-391635, 7904300, ...]; %e A208961 n=11:[1,11, 11, 88, -1276,(21362),-396825, 8089488, ...]; %e A208961 n=12:[1,12, 18, 88, -1245, 21216,(-399178),8217168, ...]; %e A208961 n=13:[1,13, 26, 91, -1209, 20956,(-399178),8295495, ...]; %e A208961 n=14:[1,14, 35, 98, -1169, 20608, -397236,(8331570), ...]; %e A208961 n=15:[1,15, 45, 110,-1125, 20193, -393700,(8331570), ...]; ... %e A208961 where the coefficients in parenthesis demonstrate the property: %e A208961 [x^n] A(x)^(2*n) = [x^n] A(x)^(2*n+1) for n>=2. %o A208961 (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*deriv(x/A^2));polcoeff(A,n)} %o A208961 for(n=0,25,print1(a(n),", ")) %Y A208961 Cf. A185971. %K A208961 sign %O A208961 0,3 %A A208961 _Paul D. Hanna_, Mar 03 2012 %E A208961 Typo in name corrected by _Vaclav Kotesovec_, Feb 22 2014