cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209015 Number of nX4 0..3 arrays with no element equal the average of immediate neighbors vertically above, diagonally above and left, and horizontally left of it.

This page as a plain text file.
%I A209015 #7 Jul 22 2025 21:34:45
%S A209015 108,15724,2303052,337083370,49349902246,7224768704460,
%T A209015 1057701934285612,154846841369187254,22669475693064075854,
%U A209015 3318796151990660980412,485869556318230056701646,71130980457981221221106644
%N A209015 Number of nX4 0..3 arrays with no element equal the average of immediate neighbors vertically above, diagonally above and left, and horizontally left of it.
%C A209015 Column 4 of A209019
%H A209015 R. H. Hardin, <a href="/A209015/b209015.txt">Table of n, a(n) for n = 1..210</a>
%F A209015 Empirical: a(n) = 121*a(n-1) +5730*a(n-2) -286920*a(n-3) -2230550*a(n-4) +168111699*a(n-5) -294889621*a(n-6) -40576917506*a(n-7) +278469929272*a(n-8) +4185653952679*a(n-9) -51679493388906*a(n-10) -95521480620954*a(n-11) +3917029561300381*a(n-12) -12619545022627596*a(n-13) -116519992699014814*a(n-14) +921470247221265689*a(n-15) -119314240369267058*a(n-16) -21755424443481809339*a(n-17) +76040536569580318461*a(n-18) +114661181811939421726*a(n-19) -1357725604456162658889*a(n-20) +2421087559015872647850*a(n-21) +6149428808328956427545*a(n-22) -30883693864978949164736*a(n-23) +21715521985680502773934*a(n-24) +121577848721422211358097*a(n-25) -282515614398015795553233*a(n-26) -59401783650000309680112*a(n-27) +975489045665324929868215*a(n-28) -948722481222129857685702*a(n-29) -1327450811491294031946559*a(n-30) +3197130081855174858692241*a(n-31) -375821449794905094130651*a(n-32) -4691721934473468324109304*a(n-33) +3863156809522165838208261*a(n-34) +3153863823478852306299581*a(n-35) -5996729276936836482160104*a(n-36) +207065725654100689193478*a(n-37) +5011502450288579874906392*a(n-38) -2360115036652008244193773*a(n-39) -2514469390051829479202967*a(n-40) +2374772123540643629418123*a(n-41) +628695226019219665423080*a(n-42) -1378444535051876357809410*a(n-43) +82722580096724428234311*a(n-44) +530121626682994473729220*a(n-45) -138965847696073156085105*a(n-46) -138249556554994118098499*a(n-47) +61438878901505761010146*a(n-48) +21473460220917979164857*a(n-49) -16472927063957604369756*a(n-50) +476472768687994672934*a(n-51) +2374787095197934792127*a(n-52) -1417255222031476419249*a(n-53) +362528775484506288419*a(n-54) +258759203906273804423*a(n-55) -218812945298855222271*a(n-56) +6317554856819353548*a(n-57) +31688055162233226837*a(n-58) -765235142583070563*a(n-59) -3374058137343271254*a(n-60) -559617723065314773*a(n-61) +314957827294734249*a(n-62) +51896030974806510*a(n-63) -2493656515165842*a(n-64) -6141332967576516*a(n-65) +509451270235560*a(n-66) +49818992233392*a(n-67) -1091729194848*a(n-68) -79830468864*a(n-69)
%e A209015 Some solutions for n=4
%e A209015 ..1..3..0..1....1..0..1..0....1..0..2..3....2..0..1..0....3..2..3..1
%e A209015 ..0..0..2..0....0..3..1..2....2..2..1..0....3..0..1..2....1..3..2..0
%e A209015 ..1..1..2..3....1..0..1..3....3..3..0..1....1..3..0..0....2..3..1..3
%e A209015 ..3..0..3..1....2..3..3..1....0..0..3..2....2..3..3..2....1..0..3..3
%K A209015 nonn
%O A209015 1,1
%A A209015 _R. H. Hardin_ Mar 04 2012