cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209033 Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero and first differences in -n..n.

Original entry on oeis.org

2, 11, 34, 88, 187, 358, 625, 1023, 1584, 2355, 3374, 4700, 6377, 8476, 11049, 14175, 17916, 22361, 27580, 33672, 40713, 48816, 58063, 68577, 80448, 93809, 108760, 125442, 143963, 164476, 187095, 211985, 239266, 269115, 301660, 337086, 375531
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2012

Keywords

Comments

Row 5 of A209032.

Examples

			Some solutions for n=6;
  -2 -5 -2 -5 -3 -4 -6 -4 -3 -1 -6 -3 -2 -4 -1 -2
   0 -1  0 -1  0  0 -1 -1  0 -1 -1 -1 -2  0  0 -2
  -1  0 -2  2  0  3  5  3 -3 -1  4  0  3 -1  0 -1
  -1  5  0  4  0  0  2  1  3 -1  4  4 -2  3  0  3
   4  1  4  0  3  1  0  1  3  4 -1  0  3  2  1  2
		

Crossrefs

Cf. A209032.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-4) - a(n-5) - 2*a(n-6) + 2*a(n-7) + a(n-8) - 2*a(n-9) + 2*a(n-10) - 2*a(n-12) + a(n-13).
Empirical g.f.: x*(2 + 7*x + 12*x^2 + 24*x^3 + 29*x^4 + 32*x^5 + 32*x^6 + 23*x^7 + 12*x^8 + 9*x^9 - x^11 + x^12) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Jul 07 2018