A209036 Number of permutations of the multiset {1,1,2,2,....,n,n} with exactly two consecutive equal terms.
1, 2, 36, 984, 43800, 2868480, 259554960, 31012490880, 4728875800320, 896042510496000, 206523228759724800, 56893926736333209600, 18461230471787348044800, 6968851610446509386803200
Offset: 1
Keywords
Examples
a(1,2) = 2, because 1221 and 2112 are the only permutations of {1,1,2,2} where exactly two consecutive terms are equal.
Crossrefs
Cf. A114938 (a(0,n)).
Programs
-
C
for (p = 0; p < 20; p++) a[p][0] = 0; for (n = 0; n < 20; n++) a[0][n] = 0; a[1][0] = 1; for (n = 0; n < 18; n++) for (p = 0; p < 18; p++) a[p+1][n + 1] = (2*n - p + 2)*a[p][n] + (2*n - p + 1)*(2*n - p)*a[p+1][n]/2 + p*a[p+1][n] + (p + 1)*(2*n - p)*a[p + 2][n] + (p + 2)*(p + 1)*a[p + 3][n]/2 ; for(n = 0; n < 10; n++) { printf("%d, %ld ", n, a[2][n]); if (n % 5 == 0) printf("\n\n"); }
Formula
a(1,1) = 1; a(p,n+1) = a[p, n + 1] = (2*n - p + 2)*a[p-1, n] + (2*n - p + 1)*(2*n - p)*a[p, n]/2 + p*a[p, n] + (p + 1)*(2*n - p)*a[p + 1, n + (p + 2)*(p + 1)*a[p + 2, n]/2.
Comments