cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209043 Number of nX4 0..3 arrays with no element equal the average of immediate neighbors vertically above and horizontally left of it.

This page as a plain text file.
%I A209043 #7 Jul 22 2025 21:35:45
%S A209043 108,13644,1752148,225262148,28964458546,3724317998214,
%T A209043 478881915072688,61575811582924326,7917568966250856112,
%U A209043 1018060448767393518568,130904710995247416149996,16832049002507023710858048
%N A209043 Number of nX4 0..3 arrays with no element equal the average of immediate neighbors vertically above and horizontally left of it.
%C A209043 Column 4 of A209047
%H A209043 R. H. Hardin, <a href="/A209043/b209043.txt">Table of n, a(n) for n = 1..210</a>
%F A209043 Empirical: a(n) = 81*a(n-1) +6019*a(n-2) +17676*a(n-3) -599593*a(n-4) -4088888*a(n-5) -3730999*a(n-6) +101900822*a(n-7) +392580866*a(n-8) -1523969122*a(n-9) -1305957528*a(n-10) +28806814857*a(n-11) -138610167727*a(n-12) -92479090429*a(n-13) +1908411722538*a(n-14) -4688061743329*a(n-15) +868176994167*a(n-16) +37238901400055*a(n-17) -108429686426996*a(n-18) +63224602311532*a(n-19) +146638886828725*a(n-20) -399120237191674*a(n-21) +643043970497948*a(n-22) +657212030688884*a(n-23) -3350737459002767*a(n-24) -512333788345638*a(n-25) +9658795596391494*a(n-26) -7307540288812320*a(n-27) +4046894684677414*a(n-28) -49280938427249*a(n-29) -15919719904208233*a(n-30) +5309011068556252*a(n-31) -27520223522274361*a(n-32) -15861006441701489*a(n-33) +40304491599363659*a(n-34) +82471636953173637*a(n-35) +47893641143347577*a(n-36) -40160830349734528*a(n-37) -42797055661074986*a(n-38) -77937400975405899*a(n-39) -41530998228072484*a(n-40) +13888895933404573*a(n-41) +29183625221012494*a(n-42) +57292324471563068*a(n-43) +24864119964192191*a(n-44) -8835195495823362*a(n-45) -12319214526059338*a(n-46) -1662673048234914*a(n-47) +3583743936817358*a(n-48) -188032462140047*a(n-49) -184935511247693*a(n-50) +57632509822517*a(n-51) +92193118733688*a(n-52) -31500301490757*a(n-53) +6805810881792*a(n-54) +8054118978759*a(n-55) +514316253699*a(n-56) -51314595768*a(n-57) +41840052498*a(n-58) +7462586376*a(n-59) +4099260312*a(n-60) -90167823*a(n-61) -35429400*a(n-62) +1062882*a(n-63)
%e A209043 Some solutions for n=4
%e A209043 ..1..3..2..1....3..1..2..3....2..3..1..3....2..0..1..0....0..1..0..3
%e A209043 ..2..2..1..2....0..1..0..0....3..2..1..1....3..0..1..2....2..2..2..2
%e A209043 ..0..2..0..3....1..0..3..0....0..2..0..1....1..3..0..0....1..1..3..2
%e A209043 ..1..0..2..1....2..2..2..0....1..3..3..1....2..3..2..2....0..3..0..0
%K A209043 nonn
%O A209043 1,1
%A A209043 _R. H. Hardin_ Mar 04 2012