cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A209094 Number of n X 2 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

2, 11, 82, 612, 4568, 34096, 254496, 1899584, 14178688, 105831168, 789934592, 5896152064, 44009478144, 328491216896, 2451891822592, 18301169713152, 136601790414848, 1019609644466176, 7610469994070016, 56805321374695424
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Column 2 of A209100.

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..1
..1..2....1..0....1..1....1..1....1..1....1..0....1..1....1..2....2..1....2..1
..2..0....0..1....0..0....2..0....2..2....0..1....2..0....0..2....2..2....2..2
..0..2....0..1....2..0....0..1....1..1....1..2....1..0....2..0....1..2....0..0
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 8*a(n-1) - 4*a(n-2) for n>3.
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(2 - x)*(1 - 2*x) / (1 - 8*x + 4*x^2).
a(n) = ((4-2*sqrt(3))^n*(-1+sqrt(3)) + (1+sqrt(3))*(2*(2+sqrt(3)))^n) / (8*sqrt(3)) for n>1.
(End)

A209093 Number of n X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

1, 11, 1326, 849548, 2896732704, 52675800891748, 5112092569118325704, 2648032740541890194825808, 7321189749687647765176559002512, 108035622217854017447945402727365754008
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Diagonal of A209100.

Examples

			Some solutions for n=4
..0..1..0..2....0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..1
..1..2..0..1....1..1..1..0....2..1..2..0....1..1..1..0....1..1..2..0
..1..0..1..2....2..2..1..2....0..2..1..1....0..2..0..2....0..1..2..2
..0..1..2..0....0..0..2..0....2..0..0..1....2..0..1..1....0..0..0..2
		

Crossrefs

Cf. A209100.

A209095 Number of n X 3 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

5, 76, 1326, 23248, 407832, 7154944, 125526240, 2202232576, 38635976064, 677829707776, 11891846929920, 208630607073280, 3660216151873536, 64214845877125120, 1126585496573239296, 19764820171301257216
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Column 3 of A209100.

Examples

			Some solutions for n=4:
..0..0..1....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..1..2
..1..2..1....1..1..1....1..1..2....2..0..0....1..1..2....1..0..2....1..2..1
..1..0..1....2..0..0....2..0..0....2..1..0....0..0..0....1..1..2....0..2..1
..2..1..2....1..2..2....1..1..1....2..2..2....1..2..0....0..0..1....1..2..2
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 20*a(n-1) - 44*a(n-2) + 16*a(n-3) for n>4.
Conjectures from Colin Barker, Jul 08 2018: (Start)
G.f.: x*(5 - 4*x)*(1 - 4*x + 2*x^2) / ((1 - 2*x)*(1 - 18*x + 8*x^2)).
a(n) = 2^(n-3) + ((9-sqrt(73))^n*(-25+sqrt(73)) + (9+sqrt(73))^n*(25+sqrt(73))) / (16*sqrt(73)) for n>1.
(End)

A209096 Number of n X 4 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

14, 520, 20928, 849548, 34538488, 1404480904, 57113932788, 2322577420320, 94449268074144, 3840847202693708, 156190807044264984, 6351611234890358120, 258292828185791666996, 10503663185141042925120, 427138999879594132134016
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Column 4 of A209100.

Examples

			Some solutions for n=4:
..0..1..2..1....0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..1
..2..0..0..0....1..1..1..2....1..1..1..0....2..1..0..2....1..1..2..0
..0..2..2..0....2..0..1..0....0..2..0..2....2..0..1..2....0..1..2..2
..0..1..0..1....1..2..0..2....2..0..1..1....1..0..1..2....0..0..0..2
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 49*a(n-1) - 356*a(n-2) + 705*a(n-3) - 425*a(n-4) + 64*a(n-5) for n>6.
Empirical g.f.: 2*x*(7 - 83*x + 216*x^2 - 337*x^3 + 177*x^4 - 28*x^5) / (1 - 49*x + 356*x^2 - 705*x^3 + 425*x^4 - 64*x^5). - Colin Barker, Jul 08 2018

A209097 Number of n X 5 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

41, 3552, 329064, 30836932, 2896732704, 272236743760, 25586970618660, 2404896311723064, 226034468180738520, 21244822678014930356, 1996786217098139769792, 187676559324985292352416
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Column 5 of A209100.

Examples

			Some solutions for n=4
..0..1..2..0..1....0..1..0..0..1....0..0..0..0..1....0..0..1..1..1
..2..0..1..0..1....1..2..1..2..1....1..1..1..2..1....1..2..0..2..2
..1..2..0..1..2....2..0..2..0..2....0..0..2..0..0....1..2..0..1..2
..1..2..2..0..0....1..1..1..1..0....1..2..0..1..1....1..2..0..0..1
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 121*a(n-1) -2777*a(n-2) +23322*a(n-3) -88925*a(n-4) +181863*a(n-5) -277613*a(n-6) +499822*a(n-7) -787540*a(n-8) +679392*a(n-9) -232128*a(n-10) for n>12.

A209098 Number of nX6 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

122, 24256, 5171088, 1118366188, 242632290432, 52675800891748, 11437585318270860, 2483525516352937680, 539268195586029921832, 117095796409143583455428, 25425988916932630731090072
Offset: 1

Views

Author

R. H. Hardin Mar 05 2012

Keywords

Comments

Column 6 of A209100

Examples

			Some solutions for n=4
..0..0..0..0..1..0....0..0..1..2..0..2....0..0..0..1..1..2....0..0..1..2..2..2
..2..2..2..1..2..0....1..0..2..1..2..1....2..1..2..0..1..1....1..0..0..1..0..1
..1..0..1..0..1..2....2..0..1..2..0..2....2..1..1..0..2..2....0..1..0..1..2..2
..1..2..1..0..1..2....2..2..0..1..2..1....0..2..1..2..0..2....0..1..0..1..0..2
		

Formula

Empirical: a(n) = 300*a(n-1) -20582*a(n-2) +603924*a(n-3) -9449609*a(n-4) +91922233*a(n-5) -653230134*a(n-6) +4097861625*a(n-7) -24669590390*a(n-8) +130239438691*a(n-9) -543298308924*a(n-10) +1704347583868*a(n-11) -3917246807088*a(n-12) +6481693905844*a(n-13) -8041265672017*a(n-14) +9445340887084*a(n-15) -12785808828112*a(n-16) +12798888267640*a(n-17) -2070180454016*a(n-18) -7015258833920*a(n-19) +3949705789040*a(n-20) +2252604606848*a(n-21) -4177948981504*a(n-22) +3059510444288*a(n-23) -1376634560512*a(n-24) +343950082048*a(n-25) -46623096832*a(n-26) +4254072832*a(n-27) -150994944*a(n-28) for n>30

A209099 Number of nX7 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

365, 165632, 81254376, 40556341276, 20321585350224, 10191444894367900, 5112092569118325704, 2564363579403254284620, 1286364276359163718904168, 645281146190219629386029844, 323693585213812977261192741044
Offset: 1

Views

Author

R. H. Hardin Mar 05 2012

Keywords

Comments

Column 7 of A209100

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0....0..0..0..1..1..2..2....0..0..1..0..0..1..2
..1..2..1..1..2..1..2....1..2..0..2..1..0..1....1..0..1..1..0..2..0
..1..0..2..1..2..1..2....1..0..1..2..0..1..2....0..1..0..1..0..2..1
..2..1..2..0..2..0..2....2..0..2..0..2..1..2....1..2..2..0..2..0..0
		

Formula

Empirical: a(n) = 747*a(n-1) -147770*a(n-2) +13767161*a(n-3) -744653684*a(n-4) +26581250215*a(n-5) -695207333006*a(n-6) +14759817640723*a(n-7) -277760418691959*a(n-8) +4818498687693894*a(n-9) -76394118399894709*a(n-10) +1087272633889124267*a(n-11) -13781949249633025934*a(n-12) +154877879063702829937*a(n-13) -1530486551719044001957*a(n-14) +13153680955142056537404*a(n-15) -97057933858981232648357*a(n-16) +604009502946148839126239*a(n-17) -3089743014121715957566207*a(n-18) +12592151665916950689366304*a(n-19) -39754681120743615063631342*a(n-20) +95137341741302104796392420*a(n-21) -157046844212176575473908358*a(n-22) +62809971153790464358833542*a(n-23) +274260546953763747783830412*a(n-24) +2277040460294389799199241820*a(n-25) -16807391841560612463088548960*a(n-26) +24466406030744021830227782360*a(n-27) +110770739770822017548456685488*a(n-28) -642543090446277892020887588984*a(n-29) +1444810249046399642357458572124*a(n-30) -1039066917861135086134740251232*a(n-31) -1913422528148454603288634391464*a(n-32) +4382959090538650287480505632320*a(n-33) -420162726254070213081625756976*a(n-34) -10248211114440498997980265577120*a(n-35) +19099890867084707788818392405696*a(n-36) -18080871254247582043431141300352*a(n-37) +9535746814747597050087649329920*a(n-38) -7274842106933434445259296042752*a(n-39) +24412291656612509021701274945408*a(n-40) -50569037378415505084329421866496*a(n-41) +49696873654792766125531687784960*a(n-42) -3207612319613312961503561953792*a(n-43) -54507430486119902763301778119680*a(n-44) +71876543544959492841651732609024*a(n-45) -41832833113226911264957080469504*a(n-46) +2042228750173828354218287046656*a(n-47) +16335249204577141685269880815616*a(n-48) -14493780574353894230229010939904*a(n-49) +7212093727799570963008951418880*a(n-50) -2258955815739930161535614189568*a(n-51) +173106370971311909976634556416*a(n-52) +236456074127730455885312425984*a(n-53) -132988789131444826419830456320*a(n-54) +57804329724143223598793883648*a(n-55) -21600473043383892821286060032*a(n-56) -190229647086921884471656448*a(n-57) +3407643142423947053302284288*a(n-58) -1076075759469831874666299392*a(n-59) +124348221639171208497856512*a(n-60) -2055059748711593966305280*a(n-61) -370952494107253014528000*a(n-62) for n>65

A209101 Number of 2 X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

2, 11, 76, 520, 3552, 24256, 165632, 1131008, 7723008, 52736000, 360103936, 2458943488, 16790716416, 114654183424, 782907736064, 5346028421120, 36504965480448, 249271496474624, 1702132247953408, 11622886011830272
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Row 2 of A209100.

Examples

			Some solutions for n=4:
..0..0..1..2....0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..0
..1..2..0..0....2..0..0..1....2..1..0..2....1..0..2..0....1..1..2..0
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 8*a(n-1) - 8*a(n-2) for n>3.
Empirical g.f.: x*(2 - 5*x + 4*x^2) / (1 - 8*x + 8*x^2). - Colin Barker, Jul 08 2018

A209102 Number of 3 X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

5, 82, 1326, 20928, 329064, 5171088, 81254376, 1276752432, 20061624144, 315228486048, 4953188212416, 77829494407872, 1222935603647424, 19215999064449408, 301941180717342336, 4744404717684160512
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Row 3 of A209100.

Examples

			Some solutions for n=4:
..0..0..0..0....0..0..0..0....0..0..1..2....0..1..0..2....0..0..1..2
..1..2..2..2....1..1..1..2....1..2..0..2....1..2..0..1....1..2..0..2
..1..0..1..1....0..2..0..1....2..0..1..2....1..0..1..2....0..1..2..1
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 22*a(n-1) - 110*a(n-2) + 180*a(n-3) - 60*a(n-4) for n>5.
Empirical g.f.: x*(5 - 28*x + 72*x^2 - 124*x^3 + 48*x^4) / (1 - 22*x + 110*x^2 - 180*x^3 + 60*x^4). - Colin Barker, Jul 08 2018

A209103 Number of 4 X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

14, 612, 23248, 849548, 30836932, 1118366188, 40556341276, 1470727552508, 53334292149524, 1934110124219172, 70138417396144324, 2543494195954824748, 92237079873229771996, 3344878451059254299004, 121298417878736991992724
Offset: 1

Views

Author

R. H. Hardin, Mar 05 2012

Keywords

Comments

Row 4 of A209100.

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..0....0..0..1..2....0..1..2..1....0..1..2..1
..1..1..1..2....1..1..1..0....2..1..0..0....2..0..0..0....2..0..1..2
..2..0..1..0....2..2..0..1....1..2..1..0....0..2..2..0....0..2..0..2
..1..2..0..2....0..1..0..0....2..1..2..2....0..1..0..1....0..1..2..1
		

Crossrefs

Cf. A209100.

Formula

Empirical: a(n) = 61*a(n-1) -1124*a(n-2) +9139*a(n-3) -34187*a(n-4) +44684*a(n-5) +35628*a(n-6) -128720*a(n-7) +102352*a(n-8) -44832*a(n-9) +17472*a(n-10) for n>12.
Showing 1-10 of 13 results. Next