A209125 Triangle of coefficients of polynomials u(n,x) jointly generated with A164975; see the Formula section.
1, 2, 1, 3, 4, 2, 5, 9, 9, 4, 8, 20, 25, 20, 8, 13, 40, 65, 65, 44, 16, 21, 78, 150, 190, 162, 96, 32, 34, 147, 331, 490, 521, 392, 208, 64, 55, 272, 697, 1192, 1473, 1368, 928, 448, 128, 89, 495, 1425, 2745, 3888, 4185, 3480, 2160, 960, 256, 144, 890
Offset: 1
Examples
First five rows: 1; 2, 1; 3, 4, 2; 5, 9, 9, 4; 8, 20, 25, 20, 8; First three polynomials u(n,x): 1 2 + x 3 + 4x + 2x^2 From _Philippe Deléham_, Mar 21 2012: (Start) (1, 1, -1, 0, 0, ...) DELTA (0, 1, 1, 0, 0, ...) begins: 1; 1, 0; 2, 1, 0; 3, 4, 2, 0; 5, 9, 9, 4, 0; 8, 20, 25, 20, 8, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209125 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A164975 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 21 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-2*y*x)/(1-x-2*y*x-x^2+y*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(2,0) = 2, T(n,k) = 0 f k < 0 or if k > n. (End)
Comments