This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209126 #14 Jan 24 2020 03:27:35 %S A209126 1,2,1,2,3,2,2,5,7,3,2,7,14,13,5,2,9,23,32,25,8,2,11,34,62,71,46,13,2, %T A209126 13,47,105,156,149,84,21,2,15,62,163,295,367,304,151,34,2,17,79,238, %U A209126 505,767,827,604,269,55,2,19,98,332,805,1435,1889,1798,1177,475 %N A209126 Triangle of coefficients of polynomials u(n,x) jointly generated with A209127; see the Formula section. %C A209126 u(n,n) = A000045(n), Fibonacci numbers. %C A209126 Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,1,1,... %C A209126 For a discussion and guide to related arrays, see A208510. %C A209126 Subtriangle of the triangle given by (1, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 21 2012 %F A209126 u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), %F A209126 v(n,x) = x*u(n-1,x) + x*v(n-1,x), %F A209126 where u(1,x)=1, v(1,x)=1. %F A209126 From _Philippe Deléham_, Mar 21 2012: (Start) %F A209126 As DELTA-triangle with 0 <= k <= n: %F A209126 G.f.: (1-y*x+x^2-y^2*x^2)/(1-x-y*x-y^2*x^2). %F A209126 T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A209126 First five rows: %e A209126 1; %e A209126 2, 1; %e A209126 2, 3, 2; %e A209126 2, 5, 7, 3; %e A209126 2, 7, 14, 13, 5; %e A209126 First three polynomials u(n,x): %e A209126 1 %e A209126 2 + x %e A209126 2 + 3x + 2x^2 %e A209126 From _Philippe Deléham_, Mar 21 2012: (Start) %e A209126 (1, 1, -2, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins: %e A209126 1; %e A209126 1, 0; %e A209126 2, 1, 0; %e A209126 2, 3, 2, 0; %e A209126 2, 5, 7, 3, 0; %e A209126 2, 7, 14, 13, 5, 0; (End) %t A209126 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209126 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209126 v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; %t A209126 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209126 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209126 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209126 TableForm[cu] %t A209126 Flatten[%] (* A209126 *) %t A209126 Table[Expand[v[n, x]], {n, 1, z}] %t A209126 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209126 TableForm[cv] %t A209126 Flatten[%] (* A209127 *) %Y A209126 Cf. A209127, A208510. %K A209126 nonn,tabl %O A209126 1,2 %A A209126 _Clark Kimberling_, Mar 05 2012