A209127 Triangle of coefficients of polynomials v(n,x) jointly generated with A209126; see the Formula section.
1, 0, 2, 0, 2, 3, 0, 2, 5, 5, 0, 2, 7, 12, 8, 0, 2, 9, 21, 25, 13, 0, 2, 11, 32, 53, 50, 21, 0, 2, 13, 45, 94, 124, 96, 34, 0, 2, 15, 60, 150, 250, 273, 180, 55, 0, 2, 17, 77, 223, 445, 617, 577, 331, 89, 0, 2, 19, 96, 315, 728, 1212, 1444, 1181, 600, 144, 0, 2, 21
Offset: 1
Examples
First five rows: 1 0...2 0...2...3 0...2...5...5 0...2...7...12...8 First three polynomials v(n,x): 1, 2x, 2x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209126 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209127 *)
Formula
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 21 2012
G.f.: (-1-x*y+x)*x*y/(-1+x*y+x+x^2*y^2). - R. J. Mathar, Aug 12 2015
Comments