This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209128 #14 Jan 24 2020 03:27:27 %S A209128 1,2,1,2,4,3,2,6,12,7,2,8,22,32,17,2,10,34,70,86,41,2,12,48,124,216, %T A209128 228,99,2,14,64,196,428,644,600,239,2,16,82,288,744,1408,1876,1568, %U A209128 577,2,18,102,402,1188,2664,4476,5364,4074,1393,2,20,124,540,1786 %N A209128 Triangle of coefficients of polynomials u(n,x) jointly generated with A209129; see the Formula section. %C A209128 For a discussion and guide to related arrays, see A208510. %C A209128 Subtriangle of the triangle given by (1, 1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 21 2012 %C A209128 Row sums are powers of 3 (A000244). - _Philippe Deléham_, Mar 21 2012 %F A209128 u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), %F A209128 v(n,x) = x*u(n-1,x) + 2x*v(n-1,x), %F A209128 where u(1,x)=1, v(1,x)=1. %F A209128 From _Philippe Deléham_, Mar 21 2012: (Start) %F A209128 As DELTA-triangle with 0 <= k <= n: %F A209128 G.f.: (1-2*y*x+x^2-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2). %F A209128 T(n,k) = T(n-1,k-1) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End) %e A209128 First five rows: %e A209128 1; %e A209128 2, 1; %e A209128 2, 4, 3; %e A209128 2, 6, 12, 7; %e A209128 2, 8, 22, 32, 17; %e A209128 First three polynomials u(n,x): %e A209128 1 %e A209128 2 + x %e A209128 2 + 4x + 3x^2 %e A209128 From _Philippe Deléham_, Mar 21 2012: (Start) %e A209128 (1, 1, -2, 1, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, ...) begins: %e A209128 1; %e A209128 1, 0; %e A209128 2, 1, 0; %e A209128 2, 4, 3, 0; %e A209128 2, 6, 12, 7, 0; %e A209128 2, 8, 22, 32, 17, 0; (End) %t A209128 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209128 u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209128 v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x]; %t A209128 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209128 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209128 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209128 TableForm[cu] %t A209128 Flatten[%] (* A209128 *) %t A209128 Table[Expand[v[n, x]], {n, 1, z}] %t A209128 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209128 TableForm[cv] %t A209128 Flatten[%] (* A209129 *) %Y A209128 Cf. A209129, A208510. %K A209128 nonn,tabl %O A209128 1,2 %A A209128 _Clark Kimberling_, Mar 05 2012